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The random number and probability distribution functions in Excel allow the 
user to easily generate samples that simulate data typical of any kind of bio-
medical study. The act of generating the samples should provide the user with 
an implicit understanding of fundamental statistical concepts, including vari-
ables, probability, independence, sampling variation, linear modeling, random 
error, fixed effects, random effects, and individual responses. Analysis of the 
samples, which is essentially an attempt to recover the formulae that generated 
the samples, should reinforce these concepts and develop others related to 
statistical inference, including bias, confidence limits, statistical significance, 
and chances of benefit and harm. The spreadsheets accompanying this article 
provide examples of generation and analysis of data for reliability and validity 
studies and for simple and covariate-adjusted comparisons of group means 
without and with repeated measurement. An example is also given for genera-
tion of a binary variable for data simulating events, such as the occurrence of 
injuries, but the analysis by generalized linear modeling is currently not avail-
able in these spreadsheets. KEYWORDS: confidence limits, data analysis, 
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When I began to use an advanced statistical 

package, I found that I could come to terms 
with the output by analyzing data with an obvi-
ous effect that I had made up. This exercise also 
gave me a deeper understanding of statistics. In 
this article I explain how you can go through a 
similar process with spreadsheets. 

In the beginning I used my imagination to 
get numbers representing an effect, such as a 
correlation between weight and height or a 
difference in mean IQ between boys and girls. I 
soon realized that it would be better to use the 

stats package itself to generate a known correla-
tion or a known difference between means. If 
the analysis reproduced the known effect, I 
could be more confident that I was using the 
package correctly. 

What did I mean by a known effect?  There 
is a true value for an effect in a population, but 
when you do a study, you get only a sample 
value, which is never exactly the true value. So 
when you generate a sample containing an ef-
fect, the trick is to reproduce the behavior of 
real samples: the known effect is the true or 
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population value, and you make up a sample 
that gives something like the true value. If you 
were to make up many samples, every sample 
would give a different value scattered around 
the true value. On average, the sample value 
would be the true value. Or you could make up 
a very large sample, in which case the sample 
value should be very close to the true value. 

Of course, in real life you can never know 
the true value of an effect in a population, so 
when you analyze real data, you can't check if 
you've got the right answer. But with made-up 
data, you can. And it's not simply a matter of 
making lots of samples or a very large sample. 
With any statistical analysis of a sample, you 
have to derive the confidence interval for the 
effect. Do this with your made-up sample and 
you should find that the confidence interval 
includes the right answer–except that there's a 
small chance it won't: 10%, if you choose 90% 
for the level of your confidence interval. If you 
are confused at this point, you won't be when 
you build up some simple data from scratch. All 
these ideas will emerge naturally.  

Let's now see how to make samples with a 
spreadsheet. In the following sections I will 
work my way through the accompanying work-
book, which has a spreadsheet for each section. 
At the end of each section I list the concepts for 
which you should have developed an implicit 
understanding. Within each spreadsheet I have 
filled cells with the colors of the rainbow to 
represent the sequence in which the cells were 
created: red first through to violet and some-
times to grey and white. (My apologies to the 
color blind.) You'll probably learn more by 
recreating each cell's formula in an adjacent 
blank cell or in a new blank spreadsheet rather 
than by simply clicking your way through the 
filled cells. 
RAND() and Coin Tossing 

At the heart of sampling is the notion of a 
random sample of a population. In Excel you 
access randomness via the function RAND(). 
Nothing goes in the brackets, by the way: all 
Excel functions have brackets, whether or not 
they have an argument. A similar function is 
PI(), which generates the value of π. If you can't 
remember a function's exact name, access it and 
all the other available functions in two ways: 
either click on the fx symbol towards the left-
hand end of the lowest menu bar, or select In-
sert/Function… from the top menu bar. A win-

dow will open that you can navigate through to 
find the function of interest. 

So, put or type =RAND() into a cell  (in up-
per or lower case, followed by pressing Enter, 
which I won't bother to state again) and you 
will get a number between 0 and 1, such as 
0.230592. That's only the first six decimal 
places of a number that has 15 decimal places, 
but we don't have to worry about all those extra 
digits. Each digit is chosen randomly from 0 
through 9. The result is a random number be-
tween 0 and 1. Put =RAND() into another cell 
and you will get another similar random num-
ber. But notice that the first cell you put 
=RAND() into has now changed to yet another 
random number!  Whenever you get into and 
out of any cell, even if you put nothing into it, 
Excel updates all the values of RAND every-
where in the spreadsheet. To make this updat-
ing happen rapidly (which is often useful), hit 
Ctrl-D ("copy down", so  make sure the cursor 
is not sitting in the first row of the table or in a 
blank cell immediately underneath a non-blank 
cell). 

A number that ranges between 0 and 1 can 
be interpreted as a probability: values closer to 
0 represent more unlikely, and values closer to 
1 represent more likely. You can interpret prob-
ability as the proportion of times you expect 
something to happen. So let's have a bit of fun 
using IF and RAND to simulate coin tosses. 
Type =IF(RAND()<0.5,"heads","tails") into a 
cell. Now click on that cell, then click on the 
little black box in the bottom right-hand corner 
and drag down for 10 or so cells. You have just 
simulated 10 or so tosses of a coin. Now do the 
same again, but change the 0.5 to 0.9 and see 
what happens when you toss the coin 10 times. 
To change the value in a lot of cells all at once, 
put =RAND() in one cell, say G5 as shown, 
then put =IF(RAND()<$G$5,"heads","tails") in 
another cell. To do it using the full functionality 
of Excel, type =IF(RAND()< then click on cell 
G5, then hit the "Function 4" (F4) key and $ 
signs will appear immediately. (Toggle the F4 
key and you cycle through all four possible 
combinations of $ and no $--for advanced us-
ers! Mac users: sorry, F4 doesn't work for you.) 
The $ signs "freeze" the reference to a cell 
when you do a copy operation, as you will see 
when you complete this cell and copy it down 
for 10 or so cells, as above. Now change the 
contents of G5 to see what happens when you 
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have a weird weighted coin that comes up 
heads or tails more often than a fair coin. 

Concepts: random, probability. 
Simple Sample Statistics 

I will start with a sample that gives nothing 
more than some simple statistics–the mean and 
standard deviation (SD)–for a single continu-
ous variable. Excel has a function, 
NORMSINV, that converts a probability into a 
value of a normally distributed variable drawn 
from a population with a mean value of 0 and 
an SD of 1. You don't have to understand what 
NORMSINV does; just give NORMSINV the 
probability generated by RAND, et voila, a 
value of a variable!  The rest of this paragraph 
is for the clever or curious. NORM and S stand 
for the standard unit normal probability distri-
bution, and INV stands for the inverse thereof. 
In fact, it is the inverse of the cumulative nor-
mal probability distribution: =NORMSINV(p) 
interprets p as a cumulative probability by re-
turning a value of a normally distributed vari-
able with mean of 0 and SD of 1, such that p is 
the proportion of the population with values 
less than the value it returns. (Draw a normal 
distribution and shade the area under the curve 
to the left of a value: that's p. Also, p here is not 
the p value of null-hypothesis tests.)  Small 
values of p give large negative values of the 
unit normally distributed variable, p=0.5 gives 
the value zero, and values of p close to 1 give 
large positive values of the variable. p=0.025 
and p=0.975 give -1.96 and 1.96, which you 
will recognize if you've done stats courses. 

 Let's generate that sample. Use the layout in 
the spreadsheet as a guide to label and make a 
column of RAND values and a column of 
NORMSINV of those values. (Having made 
one cell, copy it down by dragging down the 
little black box in the corner as before, or by 
highlighting the cell and blank cells below it, 
then hitting Ctrl-D.) Then make up a few names 
or copy my column of gender-neutral names to 
emphasize that we are about to make values of 
a subject characteristic like peak power.  

Next, decide on a mean and SD (e.g., 400 
and 50, as shown). The mean is a measure of 
where the middle of the population falls, and 
the SD is a measure of the scatter of the values 
about the middle. Generate an observed value 
of peak power from these and the NORMSINV 
value using this equation: peak power = mean + 
SD*(the NORMSINV value). Use the F4 key to 

freeze the cells for mean and SD, then copy the 
cell down to generate your sample of 100 or so. 
Get a feel for the way the RAND value makes 
the NORMSINV value, and how the 
NORMSINV value combines with the mean 
and SD to make the observed value. It's obvious 
that the mean is a measure of middle of the 
numbers, and the SD is a measure of their scat-
ter about the middle. 

Each value we have generated is called an 
observation, short for the observed value of a 
variable. Notice that we generated the observa-
tions with only three things: a mean, a standard 
deviation, and a random number. Although the 
observations for different subjects are related 
by the mean and SD, the random number makes 
it impossible to say anything about the specific 
value of any one observation, given the value of 
any other observation. The observations are 
therefore said to be independent. Most analyses 
are based on the assumption that the values of 
each subject are independent of the values of all 
other subjects. Repeated measurements on the 
same subjects in a data set are, of course, not 
independent: you get a similar value whenever 
you re-measure the same subject, as we will see 
in the next spreadsheet.  

Display a frequency histogram of the values 
as shown on the spreadsheet. (See instructions 
in the spreadsheet for this unbelievably clunky 
aspect of Excel.)  With bigger and bigger sam-
ple sizes, the frequency histogram looks more 
and more like a classic normal distribution. 
What is a normal distribution, anyway?  Just 
another one of those incredible manifestations 
of the laws of nature, which here make most 
variables have the same expected shape for 
their sampling distribution: their distribution of 
values. What's also incredible is that someone 
worked out its equation. Of course, real vari-
ables do not have perfect normal distributions, 
but they don't have to for statistical analyses.  

Now for something more advanced... Derive 
the sample mean, sample SD and sample size 
using the AVERAGE, STDEV and COUNT 
functions. Click the cursor in a blank cell some-
where, then hit Ctrl-D a few times and watch 
what happens to the sample values. What you 
are seeing is sampling variation. Notice how 
the sample values hover around the population 
value. 

Finally, some really advanced statistics… 
Create a confidence interval (or confidence 
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limits) for the mean and for the SD. A confi-
dence interval represents an inference or con-
clusion about the population or huge-sample 
value of a statistic. When you publish a 90% 
(say) confidence interval for a statistic, you are 
saying to the world: "I did this study with a 
sample, so I can't be sure about the true or 
population value, but if I were to do the study 
with a huge sample, the value of the statistic 
would probably fall in here; by probably I mean 
there's a 90% chance."    

The confidence interval is defined by the 
lower and upper confidence limits. Generate 
these for the mean using the TINV function and 
for the SD using the CHIINV function. These 
functions are based on the shape of the sam-
pling distribution of values you get for the 
mean and the SD. The formula for the confi-
dence limits for the mean is simple enough: 
mean ± t*SD/√(sample size), where t is the 
value of a t statistic (given by TINV) appropri-
ate for the level of confidence and the sample 
size. The formula for the confidence limits for 
the SD is a bit more complicated, so get the 
formulae into your spreadsheet by copying my 
cells. Check that the formulae point to the right 
cells by double clicking and noting where the 
colored boxes fall. Drag the colored boxes to 
the right cells if they aren't right. Click on the 
cells below ±CL and ×⁄÷CL to see how I de-
rived the way of showing confidence limits as a 
single plus-or-minus number for the uncertainty 
in the mean and a single times-or-divide num-
ber for the uncertainty in the SD. 

We seldom use confidence limits for a sim-
ple sample mean, but confidence limits for 
some kinds of SD are becoming more common. 
Regardless, I've got you to do some confidence 
limits here to show you what happens when you 
draw repeated samples. Do your population 
values of the mean and SD fall between their 
confidence limits? Hit Ctrl-D repeatedly and 
check each time. Do it until you get a sense 
that, yes, maybe one time in 10 the true limits 
do not enclose the true value. That's what a 
90% confidence interval means: there's a 90% 
chance that it encloses the true value.  

Play with the data. Try a 50% confidence in-
terval to get a quicker sense of whether it really 
is 50%. Make the sample a lot smaller or bigger 
as follows:  click the cursor in the far left of a 
row (not the first row of the sample) to high-
light it, drag down to highlight multiple rows, 

then either right-click Delete… or right-click 
Copy and right-click Insert Copied Cells. (Do 
this operation below the level of the figure, to 
avoid problems.) Notice the effect of a change 
in sample size on the sampling variation and on 
the width of the confidence interval, but notice 
also with repeated use of Ctrl-D that the confi-
dence interval stays true to its level. 

Concepts: independent, observation, normal 
distribution, sampling distribution, population 
and sample mean and standard deviation, sam-
pling variation, confidence interval or limits, 
inference. 
Reliability and Error of Measurement 

Measurement error and the concept of reli-
ability enter naturally at this point. All we do 
here is tweak the values of a variable to make 
them more like the values you would measure 
in reality. The tweaking consists of adding two 
terms: another RAND, to represent random 
measurement error, and a constant term to rep-
resent the kind of systematic error, offset or 
bias that occurs when there is a learning, fa-
miliarization, fatigue or other order effect with 
repeated measurement on the same subjects. 
The spreadsheet shows two trials (measure-
ments) on a sample of subjects, and an addi-
tional eight trials on one subject. You can 
change the random and systematic measure-
ment errors for each trial, but the random error 
is shown as the same for all trials, and the sys-
tematic error is shown as disappearing after the 
first two trials. There is no need to make values 
for Trials 3 to 10 for more than the first subject, 
but I have put $ signs in the right places for the 
first subject in case you do. 

Notice how each subject's second measure-
ment is similar to his or her first. If you were to 
lump all the observations for both trials to-
gether, the observations would no longer all be 
independent: given one observation, you know 
there is a similar value for another observation, 
the observation from the same subject. Re-
peated measurements on the same subjects 
produce repeated measures (here, the variables 
represent the values in each trial) and each set 
of repeated measurements makes a cluster of 
observations (here, the pairs of measurements, 
representing a cluster for each subject).  

The spreadsheet demonstrates that random 
measurement error can be estimated simply by 
deriving the SD for a single subject's repeated 
measurements: that's the usual meaning of 
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measurement error. If you thought there was a 
shift in the mean between the first two or three 
trials, you would leave those trials out; includ-
ing them would increase the apparent random 
error, which you can show in the spreadsheet by 
comparing the SD for Trials 3 to 10 with that 
for Trials 1 to 10. Increase the change in the 
mean in Trial 1 to make the effect more obvi-
ous, and use repeated sampling with Ctrl-D.  

Most often we don't have enough repeated 
measurements to estimate the measurement 
error for each subject, so we assume it is the 
same for every subject and derive it by dividing 
the SD of the change scores by √2. This ap-
proach to estimation of error also neatly gets 
around the problem of any systematic change in 
the mean contributing to the error: by using 
change scores you estimate the change in the 
mean and thereby stop it contributing to the 
estimate of random error. 

The √2 comes about as follows: there is in-
dependent random error on both trials; when 
you subtract (or add) two variables with inde-
pendent random errors, the random error of the 
result is obtained by adding the variances 
(squares of the SDs) and taking the square root; 
with equal errors, the SD of the change scores 
is therefore √2 times the error we are trying to 
estimate. Try using NORMSINV(RAND()) to 
verify that the SD of the sum of two independ-
ent random variables is the square root of the 
sum their variances. 

I have included another measure of reliabil-
ity, the test-retest correlation between two 
trials. The CORREL function provides the 
value as the usual (Pearson) correlation coeffi-
cient. The retest correlation has to be really 
high–in excess of 0.96–for a measure to be 
good for assessing individuals, as explained in 
an article/slideshow (Hopkins, 2004), An intra-
class correlation coefficient can also be calcu-
lated for reliability studies, but for two trials the 
Pearson and intraclass give practically identical 
values. When there are three trials or more, the 
intraclass correlation coefficient is a kind of 
average of all possible pairs of correlations 
between trials. Generally you do not need the 
intraclass correlation, because you should ana-
lyze reliability for consecutive pairwise trials to 
address the problem of changes in the mean and 
in the error of measurement with repeated test-
ing. If any averaging is to be done, it should be 
the average of consecutive pairwise estimates, 

which usually have the same time between 
trials. 

The various reliability statistics and their 
confidence limits can be generated with a 
reliability spreadsheet available at my stats site. 
Practice using that spreadsheet by copying in 
the numbers generated here. 

Finally and most importantly, this spread-
sheet embodies the concepts of linear modeling. 
A model is an equation linking predictor vari-
ables to a dependent variable. In a linear model, 
the predictors are simply added together; in-
deed, additive modeling would be a better term. 
I have produced each subject's values in each 
trial using an additive model: a true value for 
each subject that consists of a constant value 
(the overall mean) PLUS a value that differs 
randomly between subjects (characterized by 
the between-subject SD) PLUS a constant that 
is the same for each subject within a trial but 
differs between trials (the systematic error) 
PLUS an error that differs randomly for every 
subject (characterized by the random error SD). 
In this model the overall mean and the constant 
within a trial are fixed effects (because they 
don't change between some or all subjects) and 
we estimate them as means or mean differences 
or changes; the terms that differ from subject to 
subject or even within a subject are random 
effects (because they change randomly) and we 
estimate them as SDs.  

Statistical analysis is simply an attempt to 
recover part or all of the model that generated 
the data. Here we create the model, and we can 
check if the analysis is working properly. In 
reality Nature creates the model, and we don't 
know what it is. We have to assume a model, 
then try to recover it.  

In the past, stats packages focused on the 
fixed-effects part of the model and used a pro-
cedure called analysis of variance to estimate 
these effects. Only one random effect was per-
missible, although strategies and patches were 
devised to allow for more. Advanced stats 
packages allow you to specify and estimate all 
sorts of random effects, and the approach is 
called mixed modeling to reflect the mix of 
fixed and random. The computational proce-
dure, estimation by maximum likelihood, is not 
easy to set up in Excel. The analyses in this and 
my other spreadsheets are therefore based on 
ANOVA, but I use strategies to allow for dif-
ferent random effects where required. 
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Concepts: random error, systematic error, 
repeated measures, clusters, test-retest correla-
tion, linear model, predictor and dependent 
variables, fixed effect, random effect, mixed 
model. 
Log Transformation 

In the previous section I developed a linear 
model by adding various terms to make the 
value of a dependent variable. I then used an 
analysis that attempted to recover the terms 
from a sample. You might be surprised to learn 
that almost all statistical analyses are based on 
recovering terms from linear models. Are most 
effects in the real world additive?  No, so we 
have to find ways to make real effects into addi-
tive effects if we want to use linear models.  

A large number of effects in biomedical sci-
ence–I would say the majority–are multiplica-
tive; that is, you should think about what's go-
ing on in terms of percent or factor differences 
or changes. For example,  a treatment increases 
output power by 5% or a factor of 1.05, regard-
less of the individual's initial power output. 
Enter the logarithmic transformation. Logs turn 
multiplication into addition, so multiplicative 
effects become additive effects that can be ana-
lyzed with all the procedures developed for 
linear models. When you've done the analysis, 
you back-transform the outcome, either into a 
percent or a factor.  

The log of a number is the power to which 
you raise a number called the base, which ex-
plains why multiplication becomes addition 
when you take logs. You can use any base for 
log transformation. Excel has logs for two 
bases: the LOG function uses base 10 
(LOG(10) = 1, LOG(100) = 2,…), while LN 
uses exponential e and is known as the natural 
log. Use LN, because the back transformation is 
available as the function EXP (e to the power 
of…). If an effect or SD is y after LN transfor-
mation, the back transformation to a factor is 
EXP(y) and to a percent it is 100*(EXP(y)-1). I 
use 100*LN for the transformation, because the 
values of effects and SD in transformed units 
are already approximately percents, which 
sometimes makes it easy to see what's going  on 
without having to back transform. The ap-
proximation is practically perfect when effects 
are <5%. The back-transformations for 100*LN 
are EXP(y/100) and  100*(EXP(y/100)-1). 

The spreadsheet demonstrates the use of 
logs with simple numbers, then builds up some 

data for the effect of a treatment that has the 
same multiplicative effect for a few subjects. 
You will see that you get the same answer for 
the mean effect in the sample, whether you use 
the raw numbers or their logs (LN or 100*LN), 
but there is a big difference for the SD of the 
effect: the zero for the log-transformed variable 
reflects the fact that the effect is set up as a 
constant factor. We say that the effect is uni-
form across subjects after log transformation or 
that it is a uniform factor effect in the original 
data.  

For this idealized example I did not include 
any error of measurement. When effects are 
multiplicative, the errors of measurement are 
also usually uniformly multiplicative; that is, 
you should think about them as constant percent 
or factor errors. Log transformation converts 
such errors into uniform additive errors. Analy-
ses are not trustworthy when the errors are not 
uniform, so log transformation is important.  

Concepts: percent or factor effect, log trans-
formation, back transformation, uniform effect, 
uniform error. 
Percent Error of Measurement 

The next spreadsheet generates data for an-
other reliability study, this time with a variable 
that requires log transformation for linear mod-
eling. You therefore assume that the changes in 
the mean and the errors of measurement happen 
as percent or factor effects. For variables that 
behave in this manner, the differences between 
subjects are also usually best expressed as a 
percent or factor SD.  

A percent SD is also known as a coefficient 
of variation, or CV, and it is usually defined as 
the SD of the observed values expressed as a 
percent of the mean. I have converted the be-
tween-subject CV to a factor SD (1+CV/100), 
to emphasize that percent variations and effects 
are really factor variations and effects. I often 
use "×⁄÷" in front of a factor SD, in the same 
way the we use "±" in front of the usual raw 
SD. Thus, 400 ×⁄÷ 1.3 indicates that the values 
range typically from 400 ÷ 1.3 to 400 × 1.3. 
The values often fall outside these limits, which 
are "typical".  

Should you report variation as a ± CV or as 
a ×⁄÷ factor SD?  There is no difference be-
tween +30% and ×1.3, but if you subtract 30% 
off a number you get something different from 
÷1.3. The difference is negligible when the 
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percent is <10, but -100% implies the resulting 
number is 0 (which is nonsense), whereas ÷2 
implies the resulting number is half the mean 
(which is correct). For this reason I advocate 
showing CV only for CV of up to 20% or so, 
and I always keep in mind that what is implied 
by ±CV is really ×⁄÷(1+CV/100). CV are defi-
nitely preferable to factors when the CV are 
small: you can understand ±5.3% and ±0.86%, 
but it's hard to get a sense of magnitude from 
the corresponding factor SD of ×⁄÷1.053 and 
×⁄÷1.0086. 

Now let's generate a sample, which turns out 
to be a bit complicated. First, get true values by 
logging the mean and factor SD and combining 
with a random value of a unit-normally distrib-
uted number given by NORMSINV(RAND()), 
then back-transform. Next generate observed 
values by logging the true values and the ran-
dom and systematic errors expressed as factors, 
combining with another random value given by 
NORMSINV(RAND()), then back-transform. 
Now you can log these values, perform the 
analysis exactly as before, then back-transform. 

 I have called your attention in the spread-
sheet to a discrepancy between the means for 
each trial calculated directly from the raw data 
vs the back-transformed means of the log-
transformed data. The back-transformed mean 
gives an unbiased estimate of the population 
mean we started with, whereas the raw mean 
consistently overestimates the population mean. 
Similarly, the CV between subjects calculated 
from the logs is an unbiased estimate of the CV 
we used to generate the data, whereas the CV 
calculated by dividing the raw mean by the raw 
SD is biased low. The bias isn't noticeable 
when the between-subject CV is <20% or so, 
but it is easy to see with a CV of 100% or more. 
Verify these assertions by doing repeated sam-
pling with Ctrl-D.  

You can make the differences more obvious 
by increasing the sample size, which will re-
duce the sampling variation. Here's a trick for 
increasing the sample size: click and drag in the 
far left of the spreadsheet to highlight the entire 
rows from the second subject (Ariel) down to 
the last subject (Kade); copy, then right-click 
and Insert Copied Cells. Notice that the sample 
size increases to 39. Repeat this operation as 
often as you like with as many rows as you like, 
but never highlight the first row nor highlight 
beyond the last row.  

The estimates derived from the logs are ob-
viously correct, but there's a sense in which the 
raw mean and SD are also correct–these are, 
after all, the actual mean and the actual SD of 
the set of numbers. Even so, the log-derived 
mean and CV give a better idea of the way in 
which the original numbers are distributed. 
When a variable requires log transformation, 
the simple statistics summarizing the variable 
should be the back-transformed mean and the 
back-transformed CV or factor SD.  

I've been focusing on the mean and be-
tween-subject SD, but the main point of this 
exercise was to derive the error of measurement 
as a CV or factor SD. Use Ctrl-D to verify that 
the sample values of the changes in the mean 
and the error of measurement hover around the 
population values in an apparently unbiased 
way. I haven't bothered with calculations for 
changes in mean and errors derived directly 
from the raw numbers, because it's not appro-
priate to do them that way with these data. 
However, with real data you have to decide 
whether to use raw or log-transformed values. 
You make the decision by viewing the scatter 
of change scores between two trials plotted on 
the Y axis against mean scores of the two trials 
for each subject. The SD of the scatter in the 
vertical direction is √2 times the error of meas-
urement, so if the scatter is reasonably uniform 
across the range of mean values, the error is 
reasonably uniform. When a variable needs log 
transformation for the reliability analysis, the 
scatter of change scores of the raw values gets 
bigger for bigger mean values, but the scatter of 
change scores of the log values looks reasona-
bly uniform.  

Non-uniform scatter, or heteroscedasticity, 
is usually a problem only when the between-
subject CV is ~20% or more. Anything less and 
you can't see any difference in the scatter of the 
raw or log change scores, and you get little 
difference in the estimate of the CV via log 
transformation or via the raw data. You can 
explore these assertions by generating data and 
putting them into the spreadsheet for analysis of 
reliability, where all calculations and plots are 
generated automatically. 

Concepts: percent variation, coefficient of 
variation, factor SD, ±, ×⁄÷, heteroscedasticity. 
Validity and Error of the Estimate 

The next two spreadsheets exemplify an-
other measurement concept, validity. In a valid-
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ity study you establish the relationship between 
the values of a practical or new measure and the 
concurrent true or criterion values. The rela-
tionship is a calibration equation for adjusting 
or converting the practical measure into the 
criterion. The analysis also provides an estimate 
of the remaining or residual random error, 
known as the standard error of the estimate: 
that is, the error in the estimate of the criterion 
value from a practical value. 

The relationship between the criterion and 
practical measures is almost always investi-
gated with a simple linear model, a straight line. 
As with reliability, some measures have percent 
or factor relationships and errors and so need 
log transformation before modeling. The 
spreadsheets show an example of each. 

To generate the data, I started with a sample 
of subjects having values of a practical measure 
drawn from a population of normally distrib-
uted values with a chosen mean and SD. I then 
generated the criterion values using the equa-
tion Criterion= a + b*Practical + error, where a 
is an intercept, b is a slope, and error is a ran-
dom number drawn from a normal distribution 
with mean zero and SD equal to the standard 
error of the estimate. This equation gives the 
impression that the error is all in the criterion 
variable, whereas most of the error could be 
coming from the practical. Nevertheless, the 
use of an equation in this form results in an 
unbiased estimate of the criterion from the prac-
tical, and the resulting standard error of the 
estimate is also an unbiased estimate of the 
random error in the prediction. Failure to un-
derstand this issue has resulted in generations of 
researchers thinking that other kinds of model-
ing are required when there is error in a predic-
tor variable. 

Once you have specified the means and SD 
of the two variables and the standard error of 
the estimate, you can calculate directly the 
correlation between the variables. The formula 
for the population correlation is a bit complex, 
but it amounts to the square root of the fraction 
of variance in the Y variable explained by the X 
variable. The sample correlation has the same 
underlying formula, but you can get the value 
using the CORREL function. It is also possible 
to generate data for a straight line by specifying 
the population correlation rather than the popu-
lation standard error of the estimate, as ex-
plained in a later section. 

The spreadsheets include graphs or scatter 
plots of the two variables, with the best-fitting 
straight lines. Lines of identity on the graphs, 
and estimates of bias in the practical measures, 
make sense only when the practical is in the 
same units as the criterion. You can develop a 
calibration equation for dissimilar measures, in 
which case the correlation coefficient can be a 
useful way to assess the practical measure. A 
correlation in excess of 0.98 represents the start 
of really good measures for assessing individu-
als, also explained in that same slideshow 
(Hopkins, 2004), but measures with lower va-
lidity correlations are still useful for selection of 
groups of people or for providing additional 
evidence for making decisions about an indi-
vidual patient or client. 

The spreadsheet for validity with variables 
having a percent or factor relationship shows 
graphs for the raw data, for the raw data with 
log scales, and for the log-transformed data. 
Having drawn the graph for the raw data, the 
best way to draw the others is to click-Ctrl-drag 
on it to make an identical copy, then click on 
the points on the copy; the data will be outlined 
in colored boxes, and you can simply drag the 
boxes to the new data, if required. The straight 
line in the raw graph becomes a curve when 
you change the axes to log scales, so double 
click on it to get the Format Trendline window, 
click on the Type tab and change the type to 
Power.  

These graphs provide a beautiful illustration 
of non-uniformity of error with raw data that 
becomes uniform with log transformation or 
equivalently, log axes. Play with the values of 
the between-subject SD and the standard error 
of the estimate. You will find that non-
uniformity becomes noticeable only when the 
between-subject SD and standard error of the 
estimate are greater than about 20%. (Non-
uniformity becomes less noticeable the smaller 
the sample size.)  To see non-uniformity with 
small values of the standard error of the esti-
mate you need to view a plot of residuals vs 
predicteds, the last step with this spreadsheet. 
The residual is the difference between the ob-
served value of the dependent variable (here the 
criterion) and the value of the dependent value 
predicted by the observed value. As such, the 
residuals represent the scatter about the line in 
the vertical direction, and the standard deviation 
of the residuals is actually the standard error of 
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the estimate. Uniformity of the residuals is 
probably the most important assumptions in 
analysis of linear models, so inspection of a plot 
of residuals vs predicteds is important. Copy 
the raw data into the validity spreadsheet at 
newstats.org for analyses with confidence limits 
and plots of residuals vs predicteds. 

Concepts: validity, calibration equation, 
standard error of the estimate, residuals vs pre-
dicteds. 
Comparison of Means in Two Groups 

One of the most common statistical analyses 
is a comparison of the means of two groups, 
such as the mean of some variable for girls vs 
boys. The groups are usually independent; that 
is, knowing the value of any individual in one 
group gives you no clue about the value of an 
individual in the other group. Lack of inde-
pendence could occur if there were clusters in 
the sample, such as boys and girls drawn from 
school classes, and your analysis would have to 
reflect that. Here we will generate data for a 
simple comparison of means of independent 
groups and do a simple analysis for statistical 
significance of the difference using the so-
called p value. I'd prefer not to teach you about 
the p value and statistical significance, but it 
might be another 50 years before researchers 
are finally weaned off this confusing approach 
to making inferences about true values, so here 
goes… 

The p in p value stands for the probability of 
getting any value of the effect statistic more 
extreme than your observed value (whether 
positive or negative), if in reality there was no 
effect. A small p value therefore implies that it 
is unlikely there is no effect, although p does 
not actually represent the probability of no 
effect. (The probability of exactly no effect is 
actually zero, which is one of several funda-
mental problems with use of statistical signifi-
cance.) The convention is to treat p<0.05 as a 
threshold for deciding that there is an effect, 
and the effect is then said to be statistically 
significant at the .05 or 5% level.  

Calculate the p value for the comparison of 
the means in the spreadsheet using the TTEST 
function. A t test is a procedure for generating a 
p value based on the sampling distribution of 
the difference between two sample means. The 
sampling distribution is a t distribution, which 
is like a normal distribution, except that it isn't 
quite a normal distribution, because you have to 

use the sample standard deviation to define its 
spread, and the additional uncertainty flattens 
the distribution a little. Follow the prompts to 
select the two arrays of numbers, then always 
choose "2" for the 2-tailed option (because the p 
is for more extreme positive or negative values) 
and "3" for unequal variances (because the 
scatter of values in the two groups could be 
substantially different, and the sample size isn't 
usually big enough to decide for sure, and even 
if it were you should still assume unequal vari-
ances). If the resulting p value is really small, it 
will display in decimal exponential notation, for 
example 1.64E-06 (which means 0.00000164).  

To understand the p value better, make the 
population mean values equal. Now hit Ctrl-D 
repeatedly and watch the p value. On average, 
one time in 10 it will be less than 0.10, and one 
time in 20 it will be less than 0.05. It follows 
that, if there was really no difference in the 
means,  one time in 10 or 20 you would never-
theless declare there was a statistically signifi-
cant difference at the 10% or 5% level. But 
what can you say about the real difference?  
That's where statistical significance is deficient 
and where confidence intervals are so much 
better. 

At this point you can get some practice us-
ing a spreadsheet I devised to calculate confi-
dence intervals from a p value. See an accom-
panying article in this issue of Sportscience 
(Hopkins, 2007a). The spreadsheet also gener-
ates magnitude-based inferences, which are 
inferences based on the uncertainty in the mag-
nitude of true value. An effect is unclear if there 
is a good chance that the true value could be 
substantial in a positive and negative sense, 
such as beneficial and harmful; otherwise the 
effect is clear, and if there is a big enough 
chance of benefit and small enough chance of 
harm, you would use it. To calculate the prob-
ability that the true value is substantial in a 
positive or negative sense, you will have to 
enter the smallest important value of the statis-
tic (also known as the smallest worthwhile 
effect or the least clinically important effect). 
Only then can the spreadsheet calculate the 
probability that the true value is substantial in a 
positive or negative sense.  

The value for the smallest worthwhile effect 
can come from your clinical or practical experi-
ence, or you can use defaults that others have 
worked out. The usual default for most pur-
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poses is based on the typical variation between 
subjects, the standard deviation. Why is the SD 
involved in a consideration of the magnitude of 
the difference between means? To understand, 
draw frequency histograms for the two samples 
in the spreadsheet. You will see that the histo-
gram for the males in shifted right somewhat 
relative to that for the females, but there is a lot 
of overlap. If the histogram was shifted so far 
that there was only a tiny overlap, you would 
judge the difference to be large. But the overlap 
depends on the SD:  the only way to get  a tiny 
overlap is to have a shift that is much larger 
than the SD; conversely, a shift that is only a 
small fraction of the SD represents almost com-
plete overlap–a trivial difference.  

So, work out the difference in means as a 
multiple or fraction of an SD by dividing it by 
the SD. The result is a standardized difference. 
Jacob Cohen, a psychologist, suggested a value 
of 0.20 as the threshold separating trivial from 
small effects, and he proposed 0.50 and 0.80 as 
thresholds for moderate and large (Cohen, 
1988). I agree with 0.20, but I think thresholds 
for moderate and large should be 0.60 and 1.20. 
I also suggest thresholds of 2.0 and 4.0 for very 
large and extremely large differences in means. 
The corresponding thresholds for correlations 
are 0.1, 0.3, 0.5, 0.7 and 0.9. See the page on 
magnitudes at my stats site for more.  

The standard deviations of each group are 
never exactly the same either in the sample or 
in reality. Depending on your perspective, you 
could standardize with the SD of either group; 
for example, use the females' SD if you are 
interested in how different the males are in 
female terms. If subjects were randomized to 
the two groups for a post-only parallel-groups 
controlled trial, use the SD of the control group. 
Otherwise it's appropriate to average them, but 
it's not a simple matter of adding and dividing 
by 2. Standard deviations usually have to be 
turned into variances by squaring them before 
you process them in any way, as we saw earlier. 
Here you average the squares of the SD and 
take the square root, as shown in the spread-
sheet. What is not appropriate for a simple two-
group comparison is to use the SD of all the 
observations lumped together.  

Concepts: statistical significance, p value, t 
test, magnitude-based inferences, smallest im-
portant value, standardized difference. 

Means in Two Groups Plus a Predictor 
It's one thing to compare the means of a de-

pendent variable in two groups, but suppose the 
subjects on average differ between the groups 
in some other way that is related to the depend-
ent variable. Some other way is represented by 
values of another variable called a predictor or 
covariate, the latter name referring to the fact 
that it correlates or covaries with the dependent. 
In research, we often want to adjust or control 
for a predictor or covariate by asking the ques-
tion: what is the difference in the dependent 
variable between groups for subjects who have 
the same value of the predictor? This difference 
is not contaminated or confounded by the pre-
dictor. 

For an example, the spreadsheet generates 
values of a predictor, maximum oxygen uptake, 
and correlated values of a dependent variable, 
peak power, in a group of females and a group 
of males. You choose means and SD for both 
variables and the correlation between them in 
each group. You generate the individual values 
of the predictor first, then from them you gen-
erate the values of the dependent using this 
equation: (Y-Ymean)/SDy = r*(X-Xmean)/SDx 
+ error*√(1-r2), where Y and X are the depend-
ent and predictor, r is the correlation, and error 
is drawn from a normal distribution with mean 
= 0 and SD = 1, using NORMSINV(RAND()). 
This equation also gives an important interpre-
tation of a correlation: if you change the X or 
predictor variable by one SD for X, the average 
change in the Y or dependent variable is r times 
the SD for Y. It would also be easy to generate 
the Y from the X by specifying a slope (change 
in Y per change in X) and a residual error 
(standard error of the estimate) for Y. 

We are interested in the difference in mean 
peak power between the females and males 
when differences in maximum oxygen uptake 
are taken into account. You won't understand 
what's happening until you draw the figure 
showing the relationship between the predictor 
and dependent in each group. You should also 
draw a dashed line in the figure to illustrate the 
mean difference between the groups at a chosen 
value of the predictor. The usual chosen value 
is the overall mean of the predictor in both 
groups combined, but you can choose any 
value.  

You could easily calculate the predicted (ad-
justed)  value of peak power in each group at 



 

 

33

the chosen value of maximum oxygen uptake 
using the FORECAST function. Compare the 
adjusted difference with the raw difference. 
Play with the population mean values until you 
get an adjusted difference that is approximately 
zero, whereupon you will see that the lines 
through the points in each group run together. It 
all makes sense, really. 

The confidence interval for the difference 
between the groups would take too long to 
develop on this spreadsheet. I have therefore 
provided a new spreadsheet for this and other 
purposes with data like these. See the In-brief 
item in this issue (Hopkins, 2007b) for more. 
Copy and paste a set of raw values into the 
spreadsheet then work your way through it, 
paying special attention to the inferences.  

There is an interesting question about which 
SD you use to gauge magnitudes when you 
adjust for a covariate. What you are asking is 
this: how different are females and males who 
have the same value of the covariate?  You 
therefore use the SD for subjects with a given 
value of the covariate. Here that SD is the stan-
dard error of the estimate, which is the scatter 
about the line at any given value of the covari-
ate. In the new spreadsheet I have averaged the 
standard errors of the estimate from each group, 
by averaging their variances and taking the 
square root. 

It's possible to adjust for two or more co-
variates simultaneously, using multiple linear 
regression via the function LINEST. Instead of 
fitting a simple linear model of the form Y = a 
+ b*X + error, you fit the more general Y = a + 
b*X1 + c*X2 +… + error. In the analysis you 
recover the a, b, c,… and derive the effects 
therefrom. Unfortunately LINEST has some 
illogical features that make it difficult to use, so 
I won't go any further with it here, but 
download a no-frills spreadsheet I have devised 
for instructions, examples and additional infor-
mation about adjusting bias in various correla-
tions. 

The model for multiple linear regression is, 
of course, just another linear model, but it has a 
generic look about it. An equation of this form 
is therefore known as a general linear model. 
The Y has to be a continuous variable, such as 
time in seconds. The predictors (the Xs) can be 
continuous variables, ordinal variables that 
have integers as values (0, 1, 2,…), or nominal 
variables such as sex, with levels (female, male) 

rather than numeric values. In stats packages 
nominal predictor variables are coded into nu-
meric variables having values 0 and 1 for each 
level (e.g., female=0, male=1) before analysis. 

The a, b, c,… in the general linear model are 
known as coefficients or parameters. An analy-
sis based on recovering values of parameters is 
therefore known as a parametric analysis. Any-
thing else is a non-parametric analysis, and in 
principle you should use such analyses when 
you can't be sure about the form of the model or 
whether the assumptions underlying the analy-
sis are justified. In practice you can't be sure 
about anything, but most data can be coaxed to 
give trustworthy outcomes with parametric 
analyses. Non-parametric analyses suffer from 
loss of precision with small sample sizes, they 
do not provide estimates of magnitude, and they 
do not allow you to investigate underlying rela-
tionships represented by a model. I therefore 
strongly advise against their use. 

The spreadsheet for the analysis of two 
groups shows analysis not only for the raw data 
but also for the data after three kinds of trans-
formation: log, rank and root. Log transforma-
tion, as already discussed, is for factor effects. 
Root transformation is used for variables repre-
senting counts or scores proportional to counts. 
Rank transformation is a last resort for vari-
ables that don't analyze properly either in the 
raw state or after log or root transformation. But 
what does "properly" mean?  Basically the 
model has to fit the values of the dependent 
variable uniformly over the range of values of 
the dependent, because that assumption under-
lies the linear model. So you need to check for 
uniformity in some kind of plot related to the 
individual values and the values generated by 
the model: either the residuals vs predicteds 
plot, or for simple models as here, the more 
intuitive plot of the dependent and predictor, 
with the modeled straight lines. The scatter of 
individual values around the lines (or the scatter 
of residuals for different predicted values) has 
to be more-or-less uniform: no systematic de-
viation and no difference in the degree of scat-
ter over the range of values. (The analysis here 
allows for a difference in the degree of scatter 
in the two groups, which the usual ANOVA 
doesn't.)  So you should always check the scat-
ter to help make a decision about transforma-
tion.  

Analysis after rank transformation is some-
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times referred to mistakenly as non-parametric 
and is sometimes regarded as a panacea for 
unusual data. But it is definitely parametric, and 
the implication of the model is that differences 
in rank are linearly related to predictors. It fol-
lows that an effect that is uniform with raw data 
or other transformation cannot be uniform after 
rank transformation, because you need different 
effects to get the same change in rank for sub-
jects with different values of the variable. Rank 
transformation is therefore not a cure-all: you 
have to check on its suitability. 

Concepts: adjusting for a covariate, con-
founding, multiple linear regression, general 
linear model, continuous, ordinal, nominal, 
coefficient, parameter, parametric analysis, 
non-parametric analysis, rank transformation, 
root transformation. 
Pre-post Controlled Trial 

In the previous spreadsheet we compared the 
means of single observed values in two groups, 
females and males. The groups can, of course, 
differ in ways other than the sex of the subjects; 
in particular, if one group consists of subjects 
treated in some usual or control manner while 
the other group consists of subjects treated in a 
different experimental manner, the data would 
represent a controlled trial. It is unusual to have 
a controlled trial in which the subjects are 
measured only once, but there are situations 
where it is the best design for studying an inter-
vention, as described in the article on controlled 
trials at this site (Batterham and Hopkins, 
2005). Far more common is the kind of con-
trolled trial where subjects are measured before 
and after the control and experimental treat-
ments. I call it a pre-post parallel-groups con-
trolled trial. What you then compare between 
the groups is the change in the dependent vari-
able. The next spreadsheet generates data for 
such a study. 

The spreadsheet allows for changes in the 
mean with each trial, a different error of meas-
urement with each trial, and extra variation 
representing individual responses to the treat-
ment. All the terms are added in classic linear-
model fashion to give the observed value for a 
given subject in a given trial. The term repre-
senting individual responses should be particu-
larly helpful for understanding what it means to 
have individual responses to a treatment. It is 
simply a random normally distributed number 
with a mean of zero and a given standard devia-

tion. Each subject in the experimental group 
gets a new value for each post-test. Thus a sub-
ject who draws a positive value has a bigger 
response than the mean or fixed effect of the 
treatment in that trial, while a subject with a 
negative value has a smaller response. Depend-
ing on the magnitudes of the mean effect and 
the standard deviation representing individual 
responses, a substantial proportion of subjects 
could have a negative response to the treatment. 
Whatever, one aim of the analysis is to estimate 
the standard deviation representing individual 
responses, and I hope it is clear that the esti-
mate should be free of the random error of 
measurement common to every trial.  

I have also built in a covariate to simulate a 
subject characteristic that correlates with the 
extra variation representing individual re-
sponses. The covariate thereby accounts partly 
for the individual responses, depending on the 
strength of the correlation. This effect of a co-
variate on an outcome is important, because 
with real data it can help you identify positive 
responders, non-responders and negative re-
sponders to a treatment.  

The spreadsheet generating all these data is 
now getting too complex for you to reproduce 
in less than a few hours. It is probably more 
sensible for you to examine the formulae in 
some of the cells to see how the data are gener-
ated, then to paste the data into another spread-
sheet for detailed analysis. The spreadsheets for 
analysis of controlled trials are available in an 
article published here last year (Hopkins, 2006). 
See how well it estimates the fixed effects, the 
individual responses, the covariate, and the 
error term. 

Concepts: controlled trial, individual re-
sponses. 
Binary Outcome 

The last spreadsheet generates observations 
for a variable that has only two possible values:  
1 or 0, representing the occurrence or non-
occurrence of an event (heads or tails, present 
or absent, injured or injured, selected or re-
jected, and so on). As with the very first spread-
sheet, we have a probability that something will 
happen (e.g., tossing a weird coin that has a 
0.30 chance of heads), and we draw a value of 
probability using RAND; if RAND is <0.3, we 
score 1; otherwise we score 0. 

The difference from the first spreadsheet is 
in the way we model the probability that some-
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thing will happen. We generate events in two 
groups, so obviously we want different prob-
abilities of the event in each group, but we 
make it more interesting and realistic by intro-
ducing a covariate representing a subject char-
acteristic: subjects with different values of the 
covariate have different chances of occurrence 
of the event. How do we develop a linear model 
for a dependent variable that ranges between 0 
and 1 (the probability of the event)?  Not easily!  
We can't use p = a + b*X, because X can in 
principle range from minus infinity to plus 
infinity, so no matter what the values for a and 
b, we can easily end up with values of p outside 
the 0-1 range, which are impossible. To do 
linear modeling we have to use a + b*X, so we 
need a transformation of p that ranges from 
minus infinity to plus infinity. Use of odds gets 
us halfway there. The odds of something hap-
pening is the probability it will happen (p) di-
vided by the probability it won't happen (1-p): 
odds = p/(1-p). Because p ranges from 0 to 1, 
odds must range from 0 to infinity. Take logs 
and the result ranges from log(0) (which is 
minus infinity) to log(infinity) (which is plus 
infinity). The required transformation is there-
fore log of the odds: ln(p/(1-p)), also known as 
the logit transformation. We generate the p for 
each observation using ln(odds) = a + b*X = 
ln(p/(1-p)), so p/(1-p) = exp(a+b*X), and there-
fore p = exp(a+b*X)/(1+exp(a+b*X)). This 
explanation will lose most of you. I've done it 
in two stages in the spreadsheet, to make it 
simpler to follow.  

It seems incredible that so much of our 
modeling of events is based on a mathematical 
convenience. Does nature really model the 
effect of subject characteristics on the log of the 
odds of an event in a linear fashion?  I doubt it, 
but apparently the approximation to reality is 
good enough in many cases. 

So much for generating the data with a lin-
ear model. Now we need an analysis that will 
recover the linear model so that we can adjust 
for the effect of the covariate in our estimation 
of the difference in risk of an event in each 
group. The analysis is called binomial regres-
sion or logistic regression. Binomial refers to 
the sampling distribution of values of a binary 
variable, and logistic refers to the transforma-
tion required. Unfortunately it's not easy to set 
up such analyses in Excel. You can buy add-ins 
for the purpose, and the US Defense Technical 

Information Center has provided one free (see 
article for instructions and link), but I have not 
evaluated any as yet. Meantime you will have 
to use more sophisticated stats packages such as 
SAS and SPSS.  

The default outcome statistics from logistic 
regression are not easy to understand. Recall 
that the outcome when we compared the means 
of two groups is simply the difference in the 
means. With logistic regression we model the 
log of the odds, so the difference between two 
groups is expressed as the difference in the log 
of the odds. As we have learned. a difference in 
logs is a log of a ratio, here the log of the odds 
ratio. We can back-transform this outcome 
simply to an odds ratio, and that is the way the 
effects are usually reported. The effect of the 
covariate is also an odds ratio, per unit of the 
covariate. (I usually evaluate the effect of a 
covariate per two of its between-subject SD, 
because the resulting effect on a continuous 
dependent variable can be evaluated as the 
magnitude of the effect of the covariate by 
referring to the standardized magnitude thresh-
olds for the dependent.) 

Odds ratios are unsatisfactory outcome 
measures, because they can be hard to interpret. 
When the probabilities of the event in each 
group are small (<0.10, or chances of <10%), 
the odds ratio is approximately equal to the risk 
ratio: the ratio of the probabilities or risks in the 
two groups. A risk ratio of, say, 2 always means 
twice as likely, but an odds ratio of 2 means a 
risk ratio of less than 2 when one or both risks 
are >10%. But even risk ratios can be hard to 
interpret when it comes to evaluating risk in 
real terms, so it is always a good idea to calcu-
late the adjusted risks in each group from the 
modeled odds, with confidence limits. The 
effect of a covariate should also be shown as 
actual risks for typical values of the covariate 
for subjects in each group. Unfortunately I can't 
demonstrate these assertions via an analysis in 
the spreadsheet. 

In this introduction to event-type outcomes I 
have omitted modeling of a dependent variable 
representing a count of events, such as players' 
or teams' numbers of injuries. One approach is 
to apply the usual linear model to the root trans-
form of the count, which is included in most of 
my analysis spreadsheets. For counts greater 
than 10 or so, the root transform has an error 
independent of the count (the error is actually 
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0.5), so in principle there is no problem with 
non-uniformity of error. But Nature does not 
necessarily produce linear effects on the square 
root of counts, root transformation doesn't work 
for low counts, and back-transforming root 
effects is awkward. An approach that works 
with any counts is called Poisson regression, 
named after the sampling distribution of counts 
of random events. Poisson regression works via 
linear modeling of the log transformation of the 
count, so after back transformation the effects 
are ratios of counts or rate ratios. Whether or 
not Nature models rates in this way, it is easy to 
understand effects that can be expressed using 
terms like "twice the rate". Poisson and bino-
mial regression are members of the family of 
generalized linear models, which includes the 
usual linear models. For more on modeling of 
events download an article (Hopkins et al., 
2007) from the Clinical Journal of Sport Medi-
cine. 

 Concepts: odds, logit transformation, bino-
mial or logistic regression, odds ratio, risk ratio, 
rate ratio, Poisson regression, generalized linear 
modeling. 
Other Designs 

You now have the expertise to create data 
simulating any study you are likely to undertake 
in the biomedical disciplines. If the design is 
complex or has a complex outcome statistic, 

create some data with a spreadsheet and analyze 
them, either with another spreadsheet or with a 
stats package. In the process you will learn 
more about the effect you are studying, the 
confidence limits will help you decide on the 
required sample size, and you will feel more 
confident that you have mastered the analysis.  
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