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I present here a spreadsheet for estimating sample size in studies using the 
magnitude-based decision method (MBD) or other inferential methods. The 
MBD sample size provides acceptable uncertainty defined either by error rates 
or the width of the compatibility interval. Sample sizes with the default error 
rates or width are approximately one-third those of the traditional method of 
null-hypothesis significance testing (NHST), which is included in the spread-
sheet. The spreadsheet also provides estimates of sample size for superiority 
testing and equivalence testing. This article includes explanations of numerous 
specific issues related to sample-size estimation. I recommend using sample 
size for MBD, if the granting agency or journal allows it; otherwise use sample 
size for superiority testing, because sample size for equivalence testing is im-
practically large, and significance testing should be retired. Remember to in-
crease sample size appropriately for drop-outs, clustering of subjects, 
measures with low validity, comparison of effects in subgroups, moderators, 
mediators, individual differences or responses, and multiple effects. If you can 
access only tens of subjects, do an intervention, preferably as a crossover, 
with a reliable dependent variable. KEYWORDS: clinical significance, compat-
ibility limits, equivalence, NHST, research design, reliability, smallest important 
effect, superiority, statistical power, Type-I error, Type-II error, validity. 
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Author's note. This article is a revised version of a 
previous article (Hopkins, 2006), reformatted with 
linked contents and including new material on sample 
sizes for superiority and equivalence testing, post-hoc 
justification of sample size, and a better method for 
sample size on the fly. Explanatory comments in the 
spreadsheet have also been updated. 
Introduction 

We study a sample of subjects to find out 
about an effect in a population. The bigger the 
sample, the closer we get to the true or popula-
tion value of the effect. We don't need to study 
the entire population, but we do need to study 
enough subjects to get acceptable accuracy for 
the true value.  

"How many subjects?" is a question I am often 
called on to answer, usually before a project is 
submitted for ethics approval. Sample size is an 
ethics issue, because a sample that is too large 
represents a needless waste of resources, and a 
sample that is too small will also waste resources 
by failing to produce a clear outcome. If the 
study involves exposing subjects to pain or risk 
of harm, an appropriate sample size is ethically 
even more important. Applications for ethical 
approval of a study and the methods section of 
most manuscripts therefore require an estimate 
of sample size and a justification for the esti-
mate.  

Free software is available at various sites on 
the Web to estimate sample size using the tradi-
tional approach based on statistical significance. 
However, my colleagues and I now avoid all 
mention of statistical significance in our publica-
tions, at least in those I coauthor. Instead, we 
make a decision about the importance of an ef-
fect, based on the uncertainty in its magnitude, 
using the magnitude-based decision method 
(MBD), formerly magnitude-based inference 
(MBI). See the article (Hopkins, 2020) and In-
brief item in this issue for recent developments 
with MBD/MBI. 

I therefore devised two new approaches to 
sample-size estimation for studies in which in-
ferences are based on magnitudes. The new ap-
proaches are easily adapted to estimate sample 
size for superiority testing and equivalence test-
ing. In this article I explain all these approaches, 
and I provide a spreadsheet for the estimates. I 
also explain various other issues in sample-size 
estimation that need to be understood or taken 
into account when designing a study.  

In research, we make an inference or decision 
about the magnitude of an effect, usually about 
whether the magnitude is important or not. 

Whichever way the decision goes, we could be 
wrong, so there are two kinds of error. All meth-
ods of estimating sample size are based on keep-
ing these error rates acceptably low. 
Sample Size for Statistical Significance 

In the traditional approach to null-hypothesis 
significance testing (NHST), you need a sample 
size that would produce statistical significance 
for an effect most of the time, if the true value of 
the effect were the smallest important value. 
Stating that an effect is statistically significant 
means that the observed value of the effect falls 
in the range of extreme values that would occur 
infrequently (<5% of the time, for significance at 
the 5% or 0.05 level) if the true value were zero 
or null. The value of 5% defines the so-called 
Type-I error rate: the chance that you will de-
clare a null effect to be significant. "Most of the 
time" is usually assumed to be 80%, a number 
that is sometimes referred to as the power of the 
study. A power of 80% can also be re-expressed 
as a Type-II error rate of 20%: the chance that 
you will fail to get statistical significance for the 
smallest important effect. I have included this 
traditional approach to sample-size estimation in 
the spreadsheet accompanying this article and 
checked that it gives the same sample sizes as 
other tools (e.g., Dupont and Plummer's soft-
ware).  

NHST works best when you use the sample 
size as estimated, and when the values of any 
other parameters required for the calculation 
(e.g., error of measurement in a pre-post con-
trolled trial, incidence of disease in a cohort 
study) turn out to be correct. In such rare cases 
you can interpret a statistically significant out-
come as clinically or practically important and a 
statistically non-significant outcome as clini-
cally or practically trivial. When the sample size 
is different from that calculated, statistical and 
clinical significance are no longer congruent. In 
any case, I think Type-I and Type-II errors of 5% 
and 20% lead to decisions that are too conserva-
tive (Hopkins, 2007a). 
Sample Size for Magnitude-Based Decisions 

MBD provides a more realistic approach to 
real-world importance of effects, but it needs its 
own method of sample-size estimation. In 2006 
I devised two approaches. I did an extensive lit-
erature search but was unable to find anything 
similar at that time. 

The new methods for estimating sample size 
are based on (a) acceptable error rates for a clin-
ical or practical decision arising from the study, 

http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize
http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/PowerSampleSize
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and (b) adequate precision for the effect magni-
tude, which can also be expressed in terms of er-
ror rates. See the slideshow accompanying this 
article for figures illustrating these two ap-
proaches. 

For (a) I devised two new types of error: a de-
cision to use an effect that is actually harmful (a 
Type-1 clinical error), and a decision not to use 
an effect that is actually beneficial (a Type-2 
clinical error). I then used statistical first princi-
ples to derive formulae to calculate sample sizes 
for chosen values of Type-1 and Type-2 errors 
(e.g., 0.5% and 25% respectively), for chosen 
smallest beneficial and harmful values of out-
come statistics in various straightforward de-
signs (crossovers, controlled trials, and so on), 
and for chosen values of other design-specific 
statistics (error of measurement, between-sub-
ject standard deviation, and so on). The formu-
lae, which are based on the same assumption of 
normality of the sampling distribution of the ef-
fect or a related test statistic that underlies NHST 
sample sizes, were readily incorporated into a 
spreadsheet.  

For (b) I reasoned that precision is adequate 
when the uncertainty in the estimate of an out-
come statistic (represented by its compatibility 
interval) does not extend into values that are sub-
stantial in both a positive and a negative sense. 
The interval needs to be narrowest when the 
sample value of the statistic is zero or null. Sam-
ple sizes are then derived from the spreadsheet 
by choosing equal Type-1 and Type-2 clinical 
errors (e.g., 5% for a 90% compatibility interval, 
or 2.5% for a 95% compatibility interval). Sam-
ple sizes for Type-1 and Type-2 clinical errors of 
0.5% and 25% are almost identical to those for 
adequate precision with a 90% compatibility in-
terval, which in turn are only one-third of tradi-
tional sample sizes for the usual default Type-I 
and Type-II statistical errors of 5% and 20%. For 
adequate precision with a 95% compatibility in-
terval, the sample sizes are approximately half 
those of the traditional method. 

The above explanations of sample-size esti-
mation for MBD are essentially Bayesian, in that 
they involve limiting chances that the true effect 
has beneficial and harmful or substantial thresh-
old values. But MBD can also be expressed in 
frequentist terms as several one-sided interval 
hypothesis tests (Aisbett et al., 2020; Hopkins, 
2020), and the limiting chances can be expressed 
as expected error rates or alphas for those tests. 
From this perspective, the 0.5% risk of harm is 

the alpha level and Type-II error rate of the one-
sided test on the harm threshold, which is called 
a non-inferiority test (in the positive direction). 
The 25% chance of benefit is the Type-II error 
rate for this non-inferiority test, assuming an ex-
pected effect on the benefit threshold and the 
sample size given by the MBD calculator. For 
non-clinical MBD, the 5% chance of a substan-
tial effect is the Type-II error rate for a non-infe-
riority test on the substantial threshold, assuming 
an expected effect on the opposite threshold and 
the MBD sample size. Janet Aisbett (personal 
communication) has also pointed out that sam-
ple-size estimation in MBD is equivalent to con-
trolling Type-III error rates in NHST, in the 
sense that the MBD error rates are the rates for 
mistaking a harmful, beneficial or substantial ef-
fect of one sign for a beneficial, harmful or sub-
stantial effect of the opposite sign, respectively. 

Included in the spreadsheet for estimating 
sample size are compatibility limits and quanti-
tative and qualitative chances of benefit and 
harm for the estimated "decision" (or any cho-
sen) values: observed values greater than the de-
cision value will lead you to decide that the ef-
fect is clinically beneficial. (The decision values 
are analogous to the "critical" values of the tra-
ditional method of sample-size estimation, 
above which observed values will be statistically 
significant.) The chances of benefit and harm for 
the decision value serve as a check on the accu-
racy of the formulae I devised to estimate the 
sample sizes: you will see that the clinical 
chances provided by the spreadsheet are the 
same as the Type-1 and Type-2 clinical errors. 
The compatibility limits also serve as a check, 
but you will have to change the level of the limits 
from 90% first to 99% and then to 50% to see 
that the lower and upper limits are the smallest 
importants for harm and benefit. With Type-1 
and Type-2 errors set to 5%, the 90% limits are 
of course the same as the smallest importants. 
Thus, the compatibility intervals fall just within 
the trivial range of effect values, which leads to 
a compelling frequentist justification of mini-
mum acceptable sample size for MBD: when the 
study is done, harmful and beneficial (or sub-
stantial negative and positive) values of the ef-
fect will not be simultaneously compatible with 
the data and analytical model, for the chosen lev-
els of compatibility.  

Also included in the spreadsheet are panels of 
cells for outcomes of studies of mean changes 
and differences when the true effect is zero (or 

https://en.wikipedia.org/wiki/Type_III_error
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any chosen value). For the sample size given by 
the default Type-1 and Type-2 errors of 0.5% 
and 25%, you will see that the chances of decid-
ing to use a null effect (i.e., obtaining at least 
possibly beneficial) are appreciable (up to 17%, 
depending on the design), when the sample size 
is minimum desirable. For non-clinical effects, 
clear possibly substantial outcomes occur more 
frequently, but an effect is decisively substantial 
only when it is at least very likely, which occurs 
<1% of the time. These error rates and those with 
other chosen values of the true effect match 
closely the error rates obtained by simulation for 
standardized effects in a controlled trial 
(Hopkins & Batterham, 2016). 
Sample Size for Superiority and Equivalence 
Testing 

In an article showing how magnitude-based 
decisions are equivalent to several hypothesis 
tests (Hopkins, 2020), I was obliged to defend 
the above methods of sample-size estimation 
against the assertion of Aisbett et al. (2020) that 
sample size would be better based on superiority 
testing (also known as minimum-effects testing) 
and/or equivalence testing. With such tests, the 
researcher wants a high probability of deciding 
that an effect is substantial or trivial, when the 
true magnitude of the effect is respectively some 
substantial expected value greater than the 
smallest important or some trivial value smaller 
than the smallest important. I stated in the article 
that the MBD sample size is that of superiority 
testing for the reasonable expectation of a bor-
derline small-moderate true effect, but the sam-
ple sizes for equivalence are unrealistically large 
for most researchers (e.g., 16× the MBD sample 
size for the reasonable expectation of a true triv-
ial effect equal to half the smallest important). 
Equivalence testing is an option in a meta-anal-
ysis, because the effective sample size is the sum 
of the sample sizes in all the included studies, al-
beit with some reduction due to clustering of 
subjects into studies (explained below). 

The MBD spreadsheet can be used to estimate 
the superiority and equivalence sample sizes, as 
follows. Set the Type-1 and Type-2 errors to 5%. 
For superiority, put the expected substantial true 
value into the cell for the smallest beneficial ef-
fect. Now put the smallest important value (with 
the same sign as the expected substantial value) 
into the cell for the smallest harmful effect. If 
you make the expected substantial value 3× the 
smallest important (borderline small-moderate), 
you will get the same sample size as for MBD. 

For equivalence, put the expected trivial true 
value (positive or negative) into the cell for the 
smallest harmful effect. Now put the smallest 
important value with the same sign into the cell 
for the smallest beneficial effect. If you make the 
expected trivial value half the smallest im-
portant, you will get 16× the MBD sample size.  

You might notice that the compatibility inter-
vals with the sample sizes for superiority and 
equivalence fall precisely in the range defined by 
the values you have inserted in the smallest-im-
portant cells, which is consistent with the way 
superiority and equivalence are defined by hy-
pothesis tests. The chances of magnitude of the 
true effect can be interpreted according to the 
values in the smallest important cells, but the 
cells on the far right showing chances of clear 
outcomes for chosen true effects are difficult to 
interpret. 

Interestingly, the sample size for NHST also 
produces compatibility intervals that fall pre-
cisely between two threshold values: a 95% CI 
on the null side of the critical value just touches 
the zero, and a 60% CI away from the null just 
touches the smallest important. It follows that 
the spreadsheet or other tool for estimating sam-
ple size for NHST can be adapted easily to esti-
mate sample size for superiority testing, equiva-
lence testing, and MBD (Aisbett et al., 2020). 
NHST usually involves a two-sided test of the 
zero hypothesis, so the Type-I error first needs 
to be set to 10% to achieve a 90% CI that would 
touch the zero, whereas the Type-II error is set 
to 5% to achieve a 90% CI that would touch the 
smallest important. Now set the smallest im-
portant value in the spreadsheet or other tool to 
the following values: for superiority testing, the 
expected substantial effect minus the smallest 
important; for equivalence testing, the smallest 
important minus the expected trivial effect; and 
for non-clinical MBD (which is the same as for 
clinical MBD), twice the smallest important (the 
positive smallest important minus the negative 
smallest important). 
Specific Sample-Size Issues 

Whether you use the spreadsheet for the tradi-
tional or new approaches, there are several im-
portant sample-size issues you should know 
about when designing a study. Some of these are 
implicit in the spreadsheet, but you will need to 
take others into account yourself. 
Sample Size in Similar Studies 

Sample-size estimation is challenging for the 
average researcher, so mistakes are common. 
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Check your estimate by comparing it with sam-
ple sizes in published studies that have measures, 
subjects, and design similar to yours.  

You can even justify a sample size on the 
grounds that it is similar to those in similar stud-
ies that produced clear or statistically significant 
outcomes, but be aware that effects are clear or 
significant in many studies because the effects 
are big enough to make them so. See how wide 
the compatibility interval is in these studies, us-
ing my spreadsheet (Hopkins, 2007a) to generate 
it, if necessary; if your effect turns out to be 
smaller but with a compatibility interval of sim-
ilar width, will your effect be clear or will you 
need a larger sample? 
Choice of Smallest Important Effect 

All methods for estimation of sample size 
need a value for the smallest important effect. 
The estimates are sensitive to the value: sample 
size is proportional to the inverse of the square 
of the smallest important, so halving it results in 
a quadrupling of sample size. Your justification 
of sample size must therefore include a justifica-
tion of choice of the smallest important effect. 
For details of smallest important effects for all 
the different kinds of outcome, see Linear Mod-
els and Effect Magnitudes (Hopkins, 2010). For 
details of smallest importants for athlete perfor-
mance, see a slideshow focusing on medal-win-
ning enhancements presented at the performance 
analysis conference in 2016 and/or Appendix 1 
of Assessing an Individual (Hopkins, 2017a). 
Here is a brief summary from these links…  

A standardized difference or change of ±0.20 
(i.e., Cohen's d, 0.20 of the between-subject SD) 
can be used for continuous test scores or 
measures only when it is not possible to work 
out a difference or change in the measure that 
would be associated with a smallest important 
difference or change in health, wealth or compet-
itive performance of your subjects. In most set-
tings, the SD should be the true or pure SDP, not 
the observed SDO, which is inflated by the typi-
cal or standard error of measurement (within-
subject SD) e: SDO

2 = SDP
2+e2. Hence, the 

smallest difference or change is 0.2SDP = 
0.2√(SDO

2–e2) or 0.2SDO√r, where r = 
SDP

2/SDO
2 is the intraclass or retest correlation. 

In other words, if the observed SD is used to de-
fine the smallest important difference or change, 
it should be multiplied by the square root of the 
retest correlation. The time-frame of the error of 
measurement or retest correlation should reflect 
the time-frame of the effect to be studied. If you 

are interested in acute differences or changes, the 
typical error or retest correlation should come 
from a short-term reliability study that effec-
tively measures technical error only. If instead 
you are interested in stable differences or 
changes over a defined period (e.g., six months), 
then the smallest important change in the mean 
(or difference the mean, in a cross-sectional 
study) should come from the pure between-sub-
ject SD over such a period. 

For single Likert or visual-analog scales, re-
scale the values to range from 0 to 100 (repre-
senting "percent of full-scale deflection"); the 
smallest important is then ±10.  

Smallest effects for competition times or dis-
tances of solo athletes are ±0.3 of the within-
athlete competition-to-competition variability in 
time or distance (equivalent to an extra medal 
won or lost every 10 competitions); for test 
measures directly related to competition perfor-
mance, work out what 0.3 of the variability cor-
responds to.  

Analyze match play as chances of winning 
using the logistic-regression form of generalized 
linear modeling; the smallest important is then 
±10% in an otherwise even match (i.e., 55% vs 
45%, equivalent to an extra win or loss every 10 
matches).  

The smallest important hazard or count ratio 
is 0.9 and its inverse, 1.11 (equivalent to one ex-
tra occurrence in every 10); smallest risk and 
odds ratios are the same, for low incidence or 
prevalence (<10%). 
Effect of Research Design 

The following assertions are easily verified 
with the spreadsheet. Non-repeated measures 
studies (cross-sectional, prospective, case-con-
trol) usually need 100s or even 1000s of subjects. 
Repeated-measures interventions (crossovers 
and controlled trials) usually need fewer subjects 
(scores or sometimes 100s), depending on the re-
liability of the dependent variable, as explained 
below. Crossovers need less than parallel-group 
controlled trials (down to one quarter), provided 
reliability does not worsen too much during the 
washout period. So, if you have limited access to 
subjects or limited time or resources, you should 
choose a design and research question to accom-
modate the number you can investigate. 
Drop-outs 

Sample-size estimates for prospective studies 
and controlled trials should be inflated by 10-
30% to allow for drop-outs, depending on the de-
mands placed on the subjects, the duration of the 
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study, and incentives for compliance. 
Clustering of Subjects 

A good example of clustering is a design 
where the subjects are players from a number of 
teams. If players within a team tend to have sim-
ilar effects (i.e., different from those of other 
teams), the effective sample size is less than the 
total number of players. To account for such 
clustering, the analysis should include a random 
effect for the clusters, and sample size in theory 
needs to be increased by a factor of 1+r(c-1), 
where r is the intra-cluster correlation coefficient 
and c is the mean cluster size. It follows that you 
should keep the cluster size as small as possible 
or include as many clusters as possible.  

In practice, r is difficult to determine. The for-
mula for r is (between)/(between+within), where 
between and within are the pure between-cluster 
variance and the within-cluster variance respec-
tively. As such, r would need to be estimated in 
an exploratory study–usually an impractical op-
tion. For a repeated-measures design, r is the in-
tra-cluster correlation for change scores, so the 
exploratory study would have to be done with 
the intended interventions–again, impractical. 

Bottom line: with clustering, sample size 
needs to be greater than the usual estimate, but 
you can't be expected to estimate it before you 
do the study. You should therefore initially study 
at least as many clusters as will give you the 
usual estimate of sample size, then either do 
more clusters using sample size on the fly, or if 
you can't access more clusters, do a post-hoc jus-
tification of sample size.  
Expected Magnitude of the Effect 

A larger true effect needs a smaller sample 
size. You can understand this assertion by con-
sidering sample size for acceptable uncertainty: 
the compatibility interval for a trivial effect has 
to be sufficiently narrow not to overlap small 
positive and negative values, whereas the com-
patibility interval for a large positive or negative 
effect can be much wider before it overlaps small 
negative or positive values. But the width of the 
compatibility interval is inversely proportional 
to the square root of the sample size, so the wider 
compatibility interval for larger effects implies a 
smaller sample size. The spreadsheet has instruc-
tions on how to estimate sample size for a true 
effect expected to be larger than the smallest im-
portant: replace the smallest important beneficial 
effect with the expected larger effect.  

Sample Size "On the Fly" 
In this approach, also known as a group-se-

quential design, you study a series of cohorts, ac-
cumulating sample size all the while, until you 
get a clear or significant outcome. This approach 
is a practical way to deal with the various uncer-
tainties in the estimation of sample size; it is also 
ethically superior to using a fixed sample size, 
because it reduces waste of resources and risk to 
subjects.  

In the original version of this article, I pro-
vided the following crude approach to estimating 
the approximate sample size for a second cohort, 
when the first produces an unclear outcome. As-
sume that the observed effect in the second co-
hort will be the same as in the first cohort, then 
see how much narrower the compatibility inter-
val needs to be for a clear outcome with the com-
bined sample size for this effect. The width of 
the compatibility interval is inversely propor-
tional to the square root of the sample size, so 
some simple maths provides an estimate of the 
number of extra subjects. Note, however, that 
this sample size will give only a 50% chance of 
a clear outcome, so you may need to repeat this 
process several times. 

An approach to estimate the sample size for 
only one extra cohort with a much lower risk of 
an unclear outcome than with the above method 
is to assume the magnitude of the effect observed 
with the first cohort is the true value, then to es-
timate the minimum desirable sample size for 
such an effect (by inserting this value of the ef-
fect in the cell for smallest beneficial change). 
For repeated-measures designs, you will need to 
insert the within-subject SD (typical error), esti-
mated with the effect in your study using the 
panel of cells in the top right of the spreadsheet. 

When statistical significance is used to termi-
nate sampling, the group-sequential approach is 
known to produce biased outcomes and inflated 
error rates, but software is available to avoid 
these problems (Rogers et al., 2005). Errors and 
bias need to be investigated for the above two 
methods to terminate sampling when an effect 
becomes clear. The second approach is bound to 
be better. 
Unavoidably Small Sample Size 

A sample size smaller than the minimum de-
sirable is ethically defensible, if the true effect is 
likely to be large enough for the outcome to be 
clear. You can also argue that an unclear out-
come with a sample size that isn’t way too small 
will still set useful limits on the likely magnitude 
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of the effect and will therefore be worth publish-
ing, because it will contribute to a meta-analysis. 
To obtain a value for the smallest true effect that 
your sample size will estimate with acceptable 
precision (i.e., practically guaranteed a clear out-
come), change the value of the smallest im-
portant beneficial effect in the accompanying 
spreadsheet until it gives your sample size. Pro-
vide this value and its compatibility interval in a 
proposal, ethics application and Methods section 
of a manuscript. Use the compatibility limits to 
comment on the uncertainty for the effect that 
your study will establish, if you end up observ-
ing a trivial effect, a small effect, and so on. 

If your study involves repeated measurement 
(monitoring, crossovers, pre-post controlled tri-
als), one way to offset an unavoidably small 
sample size is to take more than one measure-
ment at each time point of interest, then average 
the measurements at each point. The error of 
measurement of the mean of n measurements is 
the error divided by √n, and the required sample 
size is proportional to the square of the error (see 
the section on reliability below), so taking three 
measurements pre and three measurements post 
an intervention will decrease the required num-
ber of subjects to one-third (provided the error 
doesn't increase between the pre and post meas-
urements). See the In-brief item When N is <10 
for more on this and other strategies for coping 
with small samples. 
"Post-hoc" Justification of Sample Size 

If you did a study with sample size determined 
by available participants or resources, you might 
find that a reviewer or editor of the submitted 
manuscript requests a sample-size justification. 
For effects with a clear outcome, you can state 
that your sample size was already adequate, but 
for unclear effects, you can estimate the sample 
sizes that would make them clear using either or 
both of the two methods explained above for 
sample size on the fly. You can and probably 
should also state the minimum desirable sample 
size provided by the spreadsheet. To do that, or 
to use the second (and better) of the two on-the-
fly methods, a repeated-measures design re-
quires an estimate of the within-subject SD, 
which you can get by inserting your estimate of 
the effect and its compatibility limits in the panel 
of cells at the top right of the spreadsheet. Use 
that SD to estimate the usual minimum desirable 
and the on-the-fly sample sizes.  

Even if you used the correctly estimated min-

imum desirable sample size, you could get an in-
conclusive outcome, thanks to sampling varia-
tion. The likelihood of such an outcome, which I 
have estimated by simulation, is at most ~10%. 
(Interested academics can download a zip file of 
spreadsheets showing the simulations. The 
spreadsheets can be tweaked to show that in-
creasing the sample size by ~25% makes the 
likelihood of an inconclusive outcome negligi-
ble.) If you find yourself in this position, esti-
mate the required extra sample size using the 
methods for sample size on the fly. 
Effect of Validity 

For non-repeated measures designs, sample 
size depends on validity of the dependent varia-
ble. This principle follows from the fact that the 
random error represented by less-than-perfect 
validity increases the uncertainty in the outcome 
statistic, so more subjects are needed for ac-
ceptable uncertainty. From first principles, the 
sample size is proportional to 1/v2 = 1+e2/SD2, 
where v is the validity correlation coefficient, e 
is the error of the estimate, and SD is the be-
tween-subject standard deviation of the criterion 
variable in the validity study. Sample size thus 
needs to be doubled when the validity correlation 
is 0.7 and quadrupled when it is 0.5. Such adjust-
ments are not included in the spreadsheet. 

Validity of a predictor variable has the same 
effect on sample size as validity of the dependent 
variable in a non-repeated measures design. 
However, the effect of less-than-perfect validity 
also manifests itself as a reduction in the magni-
tude of the effect of the predictor, the reduction 
being proportional to v and v2 for correlations 
and slopes respectively, where v is the validity 
correlation for the predictor–hence the need for 
a larger sample size. The so-called correction for 
attenuation is therefore a factor of 1/v (or 1/√r, if 
reliability error is the only source of validity er-
ror). In contrast, validity and reliability of a de-
pendent variable affect the uncertainty of a dif-
ference or change in a mean, but have no effect 
on its expected magnitude. 
Effect of Reliability 

With controlled trials and other repeated-
measures designs for mean effects, sample size 
is sensitive to reliability of the dependent varia-
ble, again because of the effect of error on uncer-
tainty. From statistical first principles, sample 
size is proportional to (1–r) = e2/SD2, where r is 
the test-retest reliability correlation coefficient, e 
is the error of measurement, and SD is the ob-
served between-subject standard deviation. Thus 
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sample sizes of only a few subjects are theoreti-
cally possible for measures of sufficiently high 
reliability, although you should always have at 
least 10 subjects in each group to reduce the 
chance that the sample substantially misrepre-
sents the population. This effect of reliability on 
sample size is implicit in the spreadsheet, be-
cause you have to enter the error of measurement 
(the within-subject SD) to get the sample size. 

The estimate of measurement error should 
come from a reliability study of duration similar 
to that of the intervention. The resulting sample 
size may still be an underestimate, because any 
individual responses to the treatment will effec-
tively inflate the error of measurement and 
thereby widen the compatibility interval for the 
treatment effect. In any case, it's often hard to 
find reliability studies with a dependent variable 
and time between trials comparable with those in 
your intended study, but you can often find com-
parable crossovers or controlled trials. I have 
therefore included a panel of cells in the sample-
size spreadsheet to estimate within-subject SD 
from such studies. The published studies needn't 
have the same kind of intervention, but try to 
find some with similar time between trials and 
similar subjects, because the approach is based 
on the assumption that the error in the published 
study or studies is similar to what will be in your 
study. It's also assumed that individual responses 
to the treatment in your study will be similar to 
those in your study. This assumption may be 
more realistic and conservative than the usual 
approach of using the error from a reliability 
study, in which there are of course no individual 
responses. You could address this issue in your 
Methods section where you justify sample size, 
if you use this approach.  
Group Sample Size for Group Comparisons 

With designs involving comparison of groups 
(e.g., a parallel-groups controlled trial), make the 
groups of equal size to give the smallest total 
size. If the size of one group is limited only by 
availability of subjects, a larger number of sub-
jects for the comparison group will increase the 
precision of the outcome, but more than five 
times as many subjects in the comparison group 
gives no further practical increase in precision. 
You can check this assertion with the spread-
sheet. 
Comparison of an Effect in Subgroups 

When you want to compare an effect between 
independent subgroups, a surprising conse-
quence of statistical first principles is that you 

will need twice as many subjects in each sub-
group to get the same precision of estimation for 
the comparison as for either subgroup alone, rep-
resenting a four-fold increase in sample size. 
Thus, for example, a controlled trial that would 
give adequate precision with 20 subjects would 
need 40 females and 40 males for adequate pre-
cision of the comparison of the effect between 
females and males. Comparisons of effects in 
subgroups therefore should not be undertaken as 
a primary aim of a study without adequate re-
sources.  

Gender subgroups are a special concern, be-
cause researchers who have difficulty recruiting 
enough subjects of one gender sometimes recruit 
a small proportion of the other gender and ana-
lyze the outcome without regard to gender. This 
approach is misguided. If you do not adjust for 
gender, you bias the mean effect towards that of 
the larger group. But when adjusting for gender, 
stats packages average the separate effects for 
the males and females. The resulting effective 
sample size is actually less than that of the larger 
group, when less than ~25% of the subjects are 
in the smaller group. Download a simple spread-
sheet I devised to illustrate this point. Conclu-
sion: try to recruit the minimum desirable sam-
ple size for at least one gender. If you include a 
smaller sample size of the other gender, analyze 
the genders separately. Compare the genders 
with a third analysis, but the comparison may be 
unclear. This conclusion applies also to ethnicity 
and other subgroups of subjects differing in a 
subject characteristic that could modify the ef-
fect. 
Modifiers and Mediators 

The above rule about quadrupling sample size 
for subgroup analyses applies also to the sample 
size needed to estimate the linear modifying ef-
fect of a continuous predictor, such as a measure 
of habitual training, when its effect is evaluated 
as the effect of 2 SD of the predictor (Hopkins, 
2010). With such analyses, you are effectively 
comparing the effect for a group of subjects who 
are 1 SD above the mean with the effect for sub-
jects 1 SD below the mean.  

Adjustment of an effect to the mean value of 
a moderator can actually reduce the sample size 
required for the effect itself, when the moderator 
has a substantial effect (because it explains oth-
erwise unexplained variance). The most im-
portant example is adjustment to the mean value 
of the dependent variable at baseline in a cross-
over or controlled trial. The reduction in sample 
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size depends on the relative magnitudes of the 
within- and between-subject SDs, and the sam-
ple-size spreadsheet takes this dependency into 
account. Note that you should adjust for this and 
other potential moderators, even if their effects 
are unclear. 

A potential mediator of a treatment effect in a 
crossover or controlled trial is analyzed by in-
cluding its change score as a main-effect predic-
tor in the linear model. As such, its required sam-
ple size is twice that of the mean effect, or four 
times if the mediator is included as an interaction 
with the group effect in a controlled trial (imply-
ing a potentially different mechanism in control 
and experimental groups).  
Individual Responses 

In a controlled trial, the magnitude of individ-
ual responses should be determined before and 
after the subject characteristic(s) that might help 
to explain them have been included as modifiers. 
The magnitude of individual responses is ex-
pressed as a standard deviation (SDIR) free of 
measurement error (e.g., ±2.6% around the treat-
ment's mean effect of 1.8%). The sample size for 
adequate precision in the estimate of SDIR in the 
worst-case scenario of zero change in the mean 
and zero SDIR is ~6.5n∆

2, where n∆ is the sample 
size required for adequate precision in the 
change in the mean. See an In-brief item in the 
2018 issue of Sportscience for the derivation of 
this formula (Hopkins, 2018b).  

The conclusion is that sample size for ade-
quate precision of individual responses is im-
practically large. Researchers should aim instead 
for the more practical sample size for adequate 
precision of potential effect modifiers and medi-
ators that might explain individual responses. 
The sample size for effect modifiers and media-
tors is "only" 4× the sample size for adequate 
precision of the mean change, as explained 
above. The standard deviation for individual re-
sponses is still worth estimating, and for suffi-
ciently large values it will be clear. See sample 
size on the fly to determine how much larger 
your sample would need to be to get a clear ef-
fect for SDIR, if it is unclear. For more on the ne-
glected but increasingly important issue of indi-
vidual responses, see the full article on individ-
ual responses (Hopkins, 2018a) an item on "in-
dividual responses made easy" (Hopkins, 2015), 
and links from the most recent article on con-
trolled trials in this journal (Hopkins, 2017b). 
Multiple Effects 

When you investigate more than one effect in 

a study, there is inevitable inflation in the 
chances of making errors. For example, imagine 
you studied two independent effects and found 
chances of harm and benefit of 0.4% and 76% 
for one effect and 0.3% and 56% for the other. If 
you decide to use both effects, the chance of do-
ing harm overall is 0.7%, which exceeds the de-
fault threshold of 0.5%. Opting to use only the 
most important or pre-planned effect would keep 
the chance of harm below 0.5%, but you would 
thereby fail to use an effect that has a chance of 
benefit of either 56% or 76%, which is way 
above the default threshold of 25% and repre-
sents potential waste of a beneficial effect.  

You could have avoided this scenario by using 
a sample size that kept the overall Type 1 and 2 
errors to <0.5% and <25%. For the worst case of 
independent effects that are on the borderline for 
making a decision one way or the other, the 
spreadsheet provides the sample size when you 
set the Type 1 and 2 errors to 0.5/n% and 25/n%, 
where n is the number of independent effects. 
(These values are approximations; exact values 
are 100[1 – [1-e/100]1/n], where e is the Type 1 
or 2 percent error, but the simpler formulae are 
accurate enough.) The same formulae apply 
when estimating sample size with Type I and II 
statistical errors. For two effects the spreadsheet 
shows that sample size needs to increase by 
nearly 50%, and for four effects the sample size 
needs to be doubled. If the effects are not inde-
pendent, for example in a study where you intend 
to choose the best of three or more treatments, 
sample size usually does not need to be increased 
to the same extent. Exactly how big it should be 
is difficult to estimate, so err towards studying 
too many subjects rather than too few.  
Case Series 

Sample size for a case series is not included in 
the spreadsheet. A case series is aimed at estab-
lishing norms of specific measures to allow con-
fident characterization of future cases relative to 
the norms. (Cases can also refer to normal sub-
jects, if the aim is to characterize a subject char-
acteristic, such as a skill.) Assuming the measure 
or an appropriate transform is normally distrib-
uted, norms are established with a mean and SD 
estimated with adequate precision. The uncer-
tainty in the mean needs to be less than the de-
fault of 0.2 SD, which is achieved with a sample 
size one-quarter that of a cross-sectional study, 
or about 70 subjects for 90% compatibility lim-
its. This sample size also gives uncertainty of 
×⁄÷1.15 for the SD, which is sometimes used as 
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the smallest important difference in an SD. 
Smaller sample sizes establish noisier norms, 
which result in less confident characterization of 
future typical cases but acceptable characteriza-
tion of future unusual cases. Larger samples are 
needed to characterize percentiles accurately, es-
pecially when the measure is not normal distrib-
uted. 
Single-subject Studies 

The number of repeated observations in a sin-
gle-subject study is analogous to the sample size 
for a sample-based study and can be estimated 
using the same procedures. The smallest im-
portant effect used in the calculation should be 
the same as for a sample-based study, because 
the effects that matter for a single subject are still 
the same as for subjects in general. 

The simplest example is a set of repeated 
measurements pre and post an intervention, and 
you assess the change in the mean. Assume that 
the measurements within the pre cluster (and 
within the post cluster) are independent, that is, 
that they differ only because of random error of 
measurement (the within-subject SD or typical 
error). The analysis is then effectively the same 
as when you compare the means of two groups 
of subjects: groups are the pre and post measure-
ments, and the between-subject SD is the  typical 
error. The example I provided in the In-brief 
item in the current issue for a measure of solo 
athletic performance shows a sample size of 120 
measurements: 60 pre and 60 post! With only a 
few repeated measurements, trivial or small ob-
served mean changes in the individual athlete 
would be inconclusive. 

Sample size to account for and estimate a 
trend in an individual athlete's tests is too diffi-
cult to estimate from equations. The workbook 
for monitoring an individual includes a spread-
sheet that allows simulation of the measure-
ments, using which you can determine whether 
the number of measurements you can take will 
be adequate. Read the article accompanying the 
workbook, and see below for more on using sim-
ulation for sample size. 
Measurement Studies 

These are performed to estimate measures of 
validity or reliability of any measures and factor 
structure of psychometric inventories. Sample 
size for such studies is not included in the 
spreadsheet, but it shows a dependence on mag-
nitude similar to that for the other designs. Ex-
tremely high reliability or validity (observed er-
ror much less than the smallest important effect) 

can be characterized with as few as 10 subjects, 
because the upper compatibility limit for the true 
error is still negligible. More modest observed 
validity or reliability (correlations ~0.7-0.9; er-
rors of measurement of ~2-3× the smallest im-
portant effect) need samples of 50-100 subjects 
for reasonable compatibility that the true values 
of validity or reliability aren't substantially 
higher or lower than the observed values. Studies 
of diagnostic tests require hundreds of subjects 
to ensure adequate sampling of the various sub-
ject characteristics that can modify diagnostic 
accuracy. Studies of factor structure need hun-
dreds and preferably a thousand or so subjects, 
because the factors are derived from pairwise 
correlations amongst all the items in the inven-
tory, so there is massive inflation of error due to 
multiple effects. 

If you are planning a repeated-measures 
study, in principle you should first do a reliabil-
ity pilot study aimed at determining the error of 
measurement (within-subject SD) for estimation 
of the required sample size. There are other rea-
sons for doing a pilot study, including feasibility 
of the protocol and familiarization of the re-
searchers and the participants, but the sample 
size required for adequate precision of estimate 
of the error of measurement is generally imprac-
tically large. In any case, it is better to estimate 
the error from published studies, as explained 
above in the section on reliability. When you 
have done the study, you can estimate the error 
using the same approach with your effect and 
provide it in your manuscript. 
Simulation for Sample Size 

Simulation can be used to determine sample 
size for complex designs or analyses, especially 
those involving non-linear models or combina-
tions of repeated measurements or other corre-
lated dependent variables. You make reasonable 
assumptions about errors and relationships be-
tween the variables. You then generate data sets 
of various sizes using appropriately transformed 
random numbers to represent the errors and rela-
tionships. Finally you analyze the data sets to de-
termine the sample size that gives acceptable 
width of the compatibility interval. An ad-
vantage of this approach is that you have to con-
sider carefully the nature of the data and the in-
tended analysis before you begin, which could 
lead to improvements in the design. It also pro-
vides the ideal vehicle for a sensitivity analysis, 
in which you explore how changes in parameters 
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and errors affect the outcome statistic. The arti-
cle on understanding statistics via simulation 
(Hopkins, 2007b) will get you started on doing 
simulations with a spreadsheet. 
Conclusions 

I recommend MBD sample-size estimation 
justified either in Bayesian or frequentist terms.  
If a grant application or manuscript is being sub-
mitted to an agency or journal that is hostile to-
wards MBD, you should show an estimate for 
superiority testing with an expected small-mod-
erate effect. This estimate is the MBD sample 
size for clinical error rates of 0.5% and 25% (or 
non-clinical error rates of 5%), so you can also 
state in a grant application that, if the effect is not 
decisively beneficial or harmful (or decisively 
substantial, for a non-clinical effect), your sam-
ple size will provide precision (compatibility 
limits) that should be adequate for publication: 
the effect will not be compatible with benefit and 
harm (or substantially positive and negative, for 
a non-clinical effect). Try to avoid justifying 
sample size with NHST, as you will need 3× as 
many subjects, and we are supposed to "retire 
statistical significance" (Amrhein et al., 2019). 
Sample sizes for equivalence testing are far too 
large for most researchers.  

Remember to increase sample size appropri-
ately for drop-outs, clustering of subjects, 
measures with low validity, comparison of ef-
fects in subgroups, moderators, mediators, indi-
vidual differences or responses, and multiple ef-
fects. If you can access only tens of subjects, do 
an intervention, preferably as a crossover, with a 
reliable dependent variable. 
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