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A study of a sample provides only an estimate of the true (population) value of 
an outcome statistic.  A report of the study therefore usually includes an infer-
ence about the true value. Traditionally, a researcher makes an inference by 
declaring the value of the statistic statistically significant or non-significant on 
the basis of a p value derived from a null hypothesis test. This approach is 
confusing and can be misleading, depending on the magnitude of the statistic, 
error of measurement, and sample size.  We use a more intuitive and practical 
approach based directly on uncertainty in the true value of the statistic. First we 
express the uncertainty as confidence limits, which define the likely range of 
the true value.  We then deal with the real-world relevance of this uncertainty 
by taking into account values of the statistic that are substantial in some posi-
tive and negative sense, such as beneficial and harmful.  If the likely range 
overlaps substantially positive and negative values, we infer that the outcome 
is unclear; otherwise, we infer that the true value has the magnitude of the 
observed value: substantially positive, trivial, or substantially negative. We 
refine this crude inference by stating qualitatively the likelihood that the true 
value will have the observed magnitude (e.g., very likely beneficial). Quantita-
tive or qualitative probabilities that the true value has the other two magnitudes 
or more finely graded magnitudes (such as trivial, small, moderate, and large) 
can also be estimated to guide a decision about the utility of the outcome.    
KEYWORDS: clinical significance, confidence limits, statistical significance.  
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Researchers usually conduct a study by se-

lecting a sample of subjects from some popula-
tion, collecting the data, then calculating the 
value of a statistic that summarizes the out-
come. In almost every imaginable study, a dif-
ferent sample would produce a different value 
for the outcome statistic, and of course none 
would be the value the researchers are most 
interested in–the value obtained by studying the 
entire population.  Researchers are therefore 
expected to make an inference about the popu-
lation value of the statistic when they report 
their findings in a scientific journal.  In this 
article we first critique the traditional approach 
to inferential statistics, the null-hypothesis test.  

Next we explain confidence limits, which have 
begun to appear in publications in response to a 
growing awareness that the null-hypothesis test 
fails to deal with the real-world significance of 
an outcome.  We then show that confidence 
limits alone also fail, before outlining our own 
approach and other approaches to making infer-
ences based on meaningful magnitudes.  
The Null-Hypothesis Test 

The almost universal approach to inferential 
statistics has been the null hypothesis test, in 
which the researcher uses a statistical package 
to produce a p value for an outcome statistic. 
The p value is the probability of obtaining any 
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value larger than the observed effect (regardless 
of sign), if the null hypothesis were true.  When 
p<0.05 the null hypothesis is rejected and the 
outcome is said to be statistically significant.   

In an effort to bring meaning to this deeply 
mysterious approach, many researchers misin-
terpret the p value as the probability that the 
null hypothesis is true, and they misinterpret 
their outcomes accordingly.  Jacob Cohen, in 
his classic article "The Earth is Round 
(p<0.05)", summed up this confusion by con-
cluding that significance testing “does not tell 
us what we want to know, and we so much 
want to know what we want to know that, out 
of desperation, we nevertheless believe that it 
does!” (Cohen, 1994, p.997) 

Readers may also wonder what is sacred 
about p<0.05? The answer is nothing. Ronald 
Fisher, the statistician and geneticist who 
championed the p value, correctly asserted that 
it was a measure of strength of evidence against 
the null hypothesis, and that "we shall not often 
go astray if we draw a conventional line at 
0.05" (Fisher, 1950).  It was not Fisher’s inten-
tion that p<0.05 should be used as an absolute 
decision rule. Indeed, he would almost certainly 
have endorsed the suggestion of Rosnow and 
Rosenthal (1989) that “surely God loves the 
0.06 nearly as much as 0.05” (p.1277).   

Regardless of how the p value is interpreted, 
hypothesis testing is illogical, because the null 
hypothesis of no relationship or no difference is 
always false–there are no truly zero effects in 
nature. Indeed, in arriving at a problem state-
ment and research question, researchers usually 
have good reasons to believe that effects will be 
different from zero. The more relevant issue is 
not whether there is an effect, but how big it is. 
Unfortunately, the p value alone provides us 
with no information about the direction or size 
of the effect or, given sampling variability, the 
range of feasible values.  Depending, inter alia, 
on sample size and variability, an outcome 
statistic with p<0.05 could represent an effect 
that is clinically, practically, or mechanistically 
irrelevant. Conversely, a non-significant result 
(p>0.05) does not necessarily imply that there is 
no worthwhile effect, as a combination of small 
sample size and large measurement variability 
may mask important effects.  An over-reliance 
on p values may therefore lead to unethical 
errors of interpretation. As Rozeboom (1997) 
stated, “Null-hypothesis significance testing is 

surely the most bone-headedly misguided pro-
cedure ever institutionalized in the rote training 
of science students” (p.35).   
Confidence Intervals 

In response to these and other critiques of 
hypothesis testing, confidence intervals are 
beginning to appear in research reports. The 
strict definition of the confidence interval is 
hotly debated, but most if not all statisticians 
would agree that the confidence interval is the 
range within which we would expect the value 
of the statistic to fall, if we were to repeat the 
study with a very large sample.  More simply, it 
is the likely range of the true, real, or popula-
tion value of the statistic.  For example, con-
sider a two-group comparison of means, in 
which we observe a mean difference of 10 
units, with a 95% confidence interval of 6 to 14 
units (or lower and upper confidence limits of 6 
and 14 units).  In plain language, we can say 
that "the true difference between groups could 
be somewhere between 6 and 14 units", where 
could refers to the probability used for the con-
fidence interval.   

A confidence interval alone or in conjunc-
tion with a p value still does not overtly address 
the question of the clinical, practical, or mecha-
nistic importance of an outcome.  Given the 
meaning of the confidence interval, an intui-
tively obvious way of dealing with magnitude 
of an outcome statistic is to inspect the magni-
tudes covered by the confidence interval and 
thereby make a statement about how big or 
small the true value could be.  The simplest 
scale of magnitudes we could use has two val-
ues:  positive and negative for statistics like a 
correlation coefficients, differences in means 
and differences in frequencies, or greater than 
unity and less than unity for ratio statistics like 
relative risks. If we apply the confidence inter-
val for an outcome statistic to such a two-level 
scale of magnitudes, we can make one of three 
inferences:  the statistic could only be positive, 
the statistic could only be negative, or the statis-
tic could be positive and negative.  The first 
two inferences are equivalent to the value of the 
statistic being statistically significantly positive 
and statistically significantly negative respec-
tively, whereas the third is equivalent to the 
value of the statistic being statistically non-
significant.  We illustrate these three inferences 
in Figure 1.   
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Figure 1. Only three inferences can be drawn when the possible magni-
tudes represented by the likely range in the true value of an outcome statis-
tic (the confidence interval, shown by horizontal bars) are determined by 
referring to a two-level scale of magnitudes (positive and negative). 

0
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positivenegative 0
Value of outcome statistic
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This equivalence of confidence intervals and 

statistical significance is a well-known corol-
lary of statistical first principles, and we will 
not explain it further here. But we stress that 
confidence intervals do not represent an ad-
vance on null hypothesis testing, if they are 
interpreted only in relation to positive and nega-
tive values or, equivalently, the zero or null 
value.   
Magnitude-Based Inferences 

The problem with a two-level scale of mag-
nitude is that some positive and negative values 
are too small to be important in a clinical, prac-
tical or mechanistic sense.   The simplest solu-
tion to this problem is use a three-level scale of 
magnitude:  substantially positive, trivial, and 
substantially negative, defined by the smallest 
important positive and negative values of the 
statistic.   In Figure 2 we illustrate a crude ap-
proach to the various magnitude-based infer-
ences for a statistic with substantial values that 
are clinically beneficial or harmful.   

There is no argument about the inferences 
shown in Figure 2 for confidence intervals that 
lie entirely within one of the three levels of 
magnitude (harmful, trivial, beneficial).  For 
example, the outcome is clearly harmful if the 
confidence interval is entirely within the harm-
ful range, because the true value could only be 
harmful (where could only be refers to a prob-
ability somewhat more than the probability 
level of the confidence interval).  A confidence 
interval that spans all three levels is also rela-
tively easy to deal with:  the true value could be 
harmful and beneficial, so the outcome is un-
clear, and we would need to do more research 
with a larger sample or with better measures to 
resolve the uncertainty.  But how do we deal 
with a confidence interval that spans two lev-
els–harmful and trivial, or trivial and benefi-
cial?  In such cases the true value could be 

harmful and trivial but not beneficial, or it 
could be trivial and beneficial but not harmful.  
Situations like these are bound to arise, because 
a true value is sometimes close to the smallest 
important value, and even a narrow confidence 
interval will sometimes overlap trivial and im-
portant values.  It would therefore be a mistake 
to conclude that the outcome was unclear.  For 
example, a confidence interval that spans bene-
ficial and trivial values is clear in the sense that 
the true value could not be harmful.   

 
Figure 2. Four different inferences can be drawn 
when the possible magnitudes represented by the 
confidence interval are determined by referring 
crudely to a three-level scale of magnitudes (benefi-
cial, trivial and harmful). 
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One option for dealing with a confidence in-

terval that spans two regions is to make the 
inference not harmful, but the reader will then 
be in doubt as to which of the other two out-
comes (trivial or beneficial) is more likely.  A 
preferable alternative is to declare the outcome 
as having the magnitude of the observed effect, 
because in almost all studies the true value will 
be more likely to have this magnitude than 
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either of the other two magnitudes. Further-
more, there is an understandable tendency for 
researchers to interpret the observed value as if 
it were the true value.  

We regard the approach summarized in Fig-
ure 2 as crude, because it does not distinguish 
between outcomes with confidence intervals 
that span a single magnitude level and those 
that start to overlap into another level.  Fur-
thermore, the researcher can make incorrect 
inferences comparable to the Type I and Type 
II errors of null-hypothesis testing: an outcome 
inferred to be beneficial could be trivial or 

harmful in reality (a Type 1 error), and an out-
come inferred to be trivial or harmful could be 
beneficial (a Type 2 error).  We therefore favor 
the more sophisticated and informative ap-
proach illustrated in Figure 3, in which we qual-
ify clear outcomes with a descriptor (Hopkins, 
2002) that represents the likelihood that the true 
value will have the observed magnitude.  The 
resulting inferences are content-rich and would 
surely qualify for what Cohen referred to as 
"what we want to know". As probabilistic rather 
than definitive statements, they are also free of 
the burden of Type 1 and Type 2 errors. 

 
Figure 3.  In a more informative approach to a three-level scale of magni-
tudes, inferences are qualified with the likelihood that the true value will 
have the observed magnitude of the outcome statistic. Numbers shown are 
the quantitative chances (%) that the true value is harmful/trivial/beneficial. 
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The inferences shown in Figure 3 are still 

incomplete, because they refer to only one of 
the three magnitudes that an outcome could 
have, and they simplify the likelihoods into 
qualitative ranges.  For studies with only one or 
two outcome statistics, researchers could go one 
step further by showing the exact chances or 
probabilities that the true effect is harmful, 
trivial and beneficial in some abbreviated man-
ner (e.g., 2/22/76%, as illustrated in Figure 3), 
then discussing the outcome using the appropri-
ate qualitative descriptor for one or more of the 
three magnitudes (e.g., very unlikely harmful, 
unlikely trivial, probably beneficial). The 
chances are estimated using the same assump-
tions about the outcome statistic as when esti-
mating p values or confidence intervals. They 
are converted to descriptors according to the 
following schema (Hopkins, 2002): <1%, al-

most certainly not; 1-5%, very unlikely; 5-25%, 
unlikely or probably not; 25-75%, possibly or 
may be; 75-95%, likely or probably; 95-99%, 
very likely; >99%, almost certainly. 

Hopkins and colleagues have experimented 
with this approach in recent publications 
(Petersen et al., 2004; Van Montfoort et al., 
2004; Paton and Hopkins, 2005; Stuart et al., 
2005).  For more than a few outcome statistics, 
this level of detail will produce a cluttered re-
port that may overwhelm the reader, so we have 
developed a simple approach exemplified in 
Hamilton et al. (2006) (see Appendix) and in 
Taylor-Mason (2005) in this issue. Neverthe-
less, the researcher will have to calculate the 
quantitative probabilities for every statistic in 
order to provide the reader with only the quali-
tative descriptors.  Statistical packages do not 
produce these probabilities and descriptors 
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without special programming, but spreadsheets 
are available to produce them from the ob-
served value of the outcome statistic, its p 
value, and the smallest clinically or practically 
important value of the statistic.  Spreadsheets 
for analysis of controlled trials also produce 
them from raw data (Hopkins, 2003).  An ex-
ample of wording to include in the Methods 
section of a manuscript is shown below. 

The quantitative approach to likelihoods of 
benefit, triviality and harm can be further en-
riched by dividing the range of substantial val-
ues into more finely graded magnitudes.  Cohen 
(1988, pp.24, 83) devised default thresholds for 
dividing values of various outcome statistics 
into trivial, small, moderate, and large. Use of 
these or modified and augmented thresholds 
(see http://newstats.org/effectmag.html) allows 
the researcher to make informative inferences 
about even unclear effects; for example, "al-
though the effect is unclear, any benefit or harm 
is at most small".  Compare this statement with 
"the effect is not statistically significant" or 
"there is no effect (p>0.05)". 
Other Approaches to Inferences 

Authors who promote the use of confidence 
intervals usually encourage researchers in an 
informal fashion to interpret the importance of 
the magnitudes represented by the interval 
(Braitman, 1991; Greenfield et al., 1998).  We 
also found several who advocate calculation of 
the chances of clinical benefit using a value for 
the minimum worthwhile effect (Froehlich, 
1999; Shakespeare et al., 2001), but we know of 
only one published attempt by mainstream 
statisticians or researchers to formalize the 
inference process in anything like the way we 
describe here.  Guyatt et al. (1995) argued that a 
study result can be considered positive and 
definitive only if the confidence interval is 
entirely in the beneficial region. This position is 
understandable for expensive treatments in 
health-care settings, but in general we believe it 
is too conservative.  

We also believe that the 95% level is too 
conservative for the confidence interval; the 
90% level is a better default, because the 
chances that the true value lies below the lower 
limit or above the upper limit are both 5%, 
which we interpret as very unlikely (Hopkins, 
2002).  A 90% level also makes it more diffi-
cult for readers to reinterpret a study in terms of 
statistical significance (Sterne and Smith, 

2001).  In any case, a final decision about act-
ing on an outcome should be made on the basis 
of the quantitative chances of benefit, triviality, 
and harm, taking into account the cost of im-
plementing a treatment or other strategy, the 
cost of making the wrong decision, the possibil-
ity of individual responses to the treatment (see 
below), and the possibility of harmful side ef-
fects.  For example, the ironical "what have we 
got to lose?" would be the appropriate attitude 
towards an inexpensive treatment that is almost 
certainly not harmful, possibly trivial, and pos-
sibly beneficial (0.3/55/45%), provided there is 
little chance of harmful individual responses 
and harmful side effects.  

Some readers will be surprised to learn that 
there is a thriving statistical counter-culture 
founded on probabilistic assertions about true 
values.  Bayesian statisticians, as they are 
known, make an inference about the true value 
of a statistic by combining the value from a 
study with an estimate of a probability distribu-
tion representing the researcher's belief about 
the true value prior to the study (Bland and 
Altman, 1998).  Bayesians contend that this 
approach replicates the way we assimilate evi-
dence, but quantifying prior belief is a major 
hurdle (Bland and Altman, 1998).  Meta-
analysis provides a more objective quantitative 
way to combine a study with other evidence, 
although the evidence has to be published and 
of sufficient standard. The approach we have 
presented here is essentially Bayesian, but with 
a "flat prior"; that is, we make no prior assump-
tion about the true value.  The approach is eas-
ily applied to the outcome of a meta-analysis. 
Where to From Here? 

Some researchers may argue that making an 
inference about magnitude requires an arbitrary 
and subjective decision about the value of the 
smallest important effect, whereas hypothesis 
testing is more scientific and objective.  We 
would counter that the default scales of magni-
tude promulgated by Cohen are objective in the 
sense that they are defined by the data, and that 
for situations where Cohen's scales do not ap-
ply, the researcher has to justify the choice of 
the smallest important effect. We concur with 
Kirk (2001) that researchers themselves are in 
the best position to justify the choice, and that 
dealing with this issue should be an ethical 
obligation. In any case, magnitudes are implicit 
even in a study designed around hypothesis 
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testing, because estimation of sample size for 
such a study requires a value for the smallest 
important effect, along with an arbitrary choice 
of Type I and Type II statistical error rates 
(usually 5% and 20% respectively, correspond-
ing to an 80% chance of statistical significance 
at the 5% level for the smallest effect).   

Studies designed for magnitude-based infer-
ences will need a new approach to sample-size 
estimation based on acceptable uncertainty.  A 
draft spreadsheet has been devised for this pur-
pose and will be presented at the 2006 annual 
meeting of the American College of Sports 
Medicine (Hopkins, 2006).  Sample sizes are 
approximately one-third of those based on hy-
pothesis testing, for what seems to be reasona-
bly acceptable uncertainty. 

Making an inference about magnitudes is no 
easy task: it requires justification of the smallest 
worthwhile effect, extra analysis that stats pack-
ages do not yet provide by default, a more 
thoughtful and often difficult discussion of the 
outcome, and sometimes an unsuccessful fight 
with reviewers and the editor.  On the other 
hand, it is all too easy for a researcher to inspect 

the p value that every statistical package gener-
ates, then declare that either there is or there 
isn't an effect.  We may therefore have to wait a 
decade or two before the tipping point is 
reached and magnitude-based inferences in one 
form or another displace hypothesis testing.  
We will need the help of the gatekeepers of 
knowledge–peer reviewers of manuscripts and 
funding proposals, journal editors, ethics com-
mittee representatives, funding committee 
members–to remove the shackles of hypothesis 
testing and to embrace more enlightened ap-
proaches based on meaningful magnitudes.  

A few final words of caution…  Statistical 
significance, confidence limits, and magnitude-
based inferences all relate to the one and only 
true or population value of a statistic, not to the 
value for an individual in that population.  For 
example, a large-enough sample could show 
that a treatment is almost certainly beneficial on 
average, yet the treatment could be harmful to a 
substantial proportion of the population, be-
cause of individual responses.  We are explor-
ing ways to make magnitude-based inferences 
about individuals (Pyne et al., 2005). 

References 
Altman DG, Schultz KF, Moher D, Egger M, Davi-

doff F, Elbourne D, Gøtzsche PC, Lang T (2001). 
The revised CONSORT statement for reporting 
randomized trials: explanation and elaboration. 
Annals of Internal Medicine 134, 663-694 

Bland J, Altman D (1998). Bayesians and frequen-
tists. BMJ 317, 1151-1160 

Braitman LE (1991). Confidence intervals assess 
both clinical significance and statistical signifi-
cance. Annals of Internal Medicine 114, 515-517 

Cohen J (1988). Statistical Power Analysis for the 
Behavioral Sciences, 2nd 2nd. Hillsdale, NJ: 
Lawrence Erlbaum 

Cohen J (1994). The earth is round (p<0.05). Ameri-
can Psychologist 49, 997-1003 

Fisher RA (1950). Statistical Methods for Research 
Workers. London: Oliver and Boyd 

Froehlich G (1999). What is the chance that this 
study is clinically significant? A proposal for Q 
values. Effective Clinical Practice 2, 234-239 

Greenfield MLVH, Kuhn JE, Wojtys EM (1998). A 
statistics primer: confidence intervals. American 
Journal of Sports Medicine 26, 145-149 

Guyatt G, Jaeschke R, Heddle N, Cook D, Shannon 
H, Walter S (1995). Basic statistics for clinicians: 
2. Interpreting study results: confidence intervals. 
Canadian Medical Association Journal 152, 169-
173 

Hamilton RJ, Paton CD, Hopkins WG (2006). Effect 
of high-intensity resistance training on perform-
ance of competitive distance runners. Interna-
tional Journal of Sports Physiology and Perform-
ance 1, 40-49 

Hopkins WG (2002). Probabilities of clinical or 
practical significance. Sportscience 6, 
sportsci.org/jour/0201/wghprob.htm 

Hopkins WG (2003). A spreadsheet for analysis of 
straightforward controlled trials. Sportscience 7, 
sportsci.org/jour/03/wghtrials.htm 

Hopkins WG (2006). Sample sizes for magnitude-
based inferences about clinical, practical or 
mechanistic significance (Abstract). Medicine 
and Science in Sports and Exercise 38(5), (in 
press) 

Kirk RE (2001). Promoting good statistical practice: 
some suggestions. Educational and Psychological 
Measurement 61, 213-218 

Paton CD, Hopkins WG (2005). Combining explo-
sive and high-resistance training improves per-
formance in competitive cyclists. Journal of 
Strength and Conditioning Research 19, 826-830 

Paton CD, Hopkins WG, Vollebregt L (2001). Little 
effect of caffeine ingestion on repeated sprints in 
team-sport athletes. Medicine and Science in 
Sports and Exercise 33, 822-825 

Petersen CJ, Wilson BD, Hopkins WG (2004). Ef-
fects of modified-implement training on fast 



 

 

12

bowling in cricket. Journal of Sports Sciences 22, 
1035-1039 

Pyne DB, Hopkins WG, Batterham A, Gleeson M, 
Fricker PA (2005). Characterising the individual 
performance responses to mild illness in interna-
tional swimmers. British Journal of Sports Medi-
cine 39, 752-756 

Rosnow RL, Rosenthal R (1989). Statistical proce-
dures for the justification of knowledge in psy-
chological science. American Psychologist 44, 
1276-1284 

Rozeboom WW (1997). Good science is abductive, 
not hypothetico-deductive. In: Harlow LL, Mu-
laik SA, Steiger JH (edit-rs) What if there were 
no Significance Tests? Mahwah, NJ: Lawrence 
Erlbaum, 335-392 

Shakespeare TP, Gebski VJ, Veness MJ, Simes J 
(2001). Improving interpretation of clinical stud-
ies by use of confidence levels, clinical signifi-

cance curves, and risk-benefit contours. Lancet 
357, 1349–1353 

Sterne JAC, Smith GD (2001). Sifting the evidence-
-what's wrong with significance tests. BMJ 322, 
226-231 

Stuart GR, Hopkins WG, Cook C, Cairns SP (2005). 
Multiple effects of caffeine on simulated high-
intensity team-sport performance. Medicine and 
Science in Sports and Exercise 37, 1998-2005 

Taylor-Mason AM (2005). High-resistance interval 
training improves 40-km time-trial performance 
in competitive cyclists. Sportscience 9, 27-31 

Van Montfoort MC, Van Dieren L, Hopkins WG, 
Shearman JP (2004). Effects of ingestion of bi-
carbonate, citrate, lactate, and chloride on sprint 
running. Medicine and Science in Sports and Ex-
ercise 36, 1239-1243 

Published Dec 2005 
©2005 

Appendix: Examples of Reporting of Magnitude-Based Inferences 
Methods Section 

The following is an extract from the Meth-
ods section of a recent publication (Stuart et al., 
2005) featuring magnitude-based inferences… 
"To make inferences about true (population) 
values of the effect of caffeine on performance, 
the uncertainty in the effect was expressed as 
90% confidence limits and as likelihoods that 
the true value of the effect represents substan-
tial change (harm or benefit) (Hopkins, 2002). 
An effect was deemed unclear if its confidence 
interval overlapped the thresholds for substan-
tiveness; that is, if the effect could be substan-
tially positive and negative, or beneficial and 

harmful.  The smallest substantial change in 
sprint performance was assumed to be a reduc-
tion or increase in sprint time of more than 
0.8% (Paton et al., 2001). The between-subject 
standard deviation for these measures was used 
to convert the log-transformed changes in per-
formance into standardized (Cohen) changes in 
the mean. The smallest standardized change 
was assumed to be 0.20 (Cohen, 1988). Infer-
ences about the correlations between plasma 
caffeine, plasma epinephrine and performance 
were made with respect to a smallest worth-
while correlation of 0.10  (Cohen, 1988)." 

 
Results Section 

This table is taken from Hamilton et al. (2006): 
 

Table 2–Changes in performance in experimental and control groups, and qualitative inferences 
about the effects on competitive performance. Effects are listed in order of decisiveness. 

Change in measure (%) 

 
Experimental 
mean ± SD 

Control 
mean ± SD 

Difference; 
± 90%CL Qualitative inference  

Predicted 800-m speed 4.4 ± 2.3 0.8 ± 2.4 3.6; ±1.8 Benefit almost certain 
Predicted 1500-m speed 4.1 ± 3.6 0.4 ± 4.1 3.7; ±3.0 Benefit very likely 
Peak incremental speed 2.7 ± 1.4 0.9 ± 1.5 1.8; ±1.1 Benefit very likely 
Speed at 4-mM lactate 4.0 ± 2.7 0.5 ± 5.2 3.5; ±3.4 Benefit likely 
5-km time-trial speed 2.2 ± 1.7 1.0 ± 1.1 1.2; ±1.1 Benefit likely 
Speed at fixed heart rate 1.6 ± 4.7 -0.5 ± 4.0 2.1; ±3.4 Unclear 
±90%CL: add and subtract this number to the mean effect to obtain the 90% confidence limits for 
the true difference. 
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Discussion Section 
In response to a request from the reviewer 

and editor, the authors of Stuart et al. (2005) 
also included the following paragraph in the 
Discussion… "Our conclusions are based on the 
approach to inferential statistics that empha-
sizes precision of estimation rather than null-
hypothesis testing. To that end we have fol-
lowed recommendations to show and interpret 
the practical importance of confidence limits 
(for example, Altman et al., 2001; Sterne and 
Smith, 2001), which represent the uncertainty 
in the true value of each effect.  We have built 
on these recommendations by enunciating a 
rule for deciding when an effect is clear or un-
clear and by making quantitative assertions 
about likelihood that the effect is beneficial or 
harmful." 

Update 
A short item introducing a slideshow sum-

marizing most of the issues in this article was 
published in this journal in last year (Hopkins, 
2004). The slideshow has been updated with an 
extra slide emphasizing that the inferences 
apply to population effects, not individuals. 

Dec 16, 2006: Link to another update of the 
slideshow in Powerpoint or PDF format.  

August 9, 2009: further minor updates for 
consistency with a more recent article (Hop-
kins, 2007) explaining mechanistic vs clini-
cal/practical inferences. 
Hopkins WG (2004). Clinical significance and deci-

siveness. Sportscience 8, i 
Hopkins WG (2007). A spreadsheet for deriving a 

confidence interval, mechanistic inference and 
clinical inference from a p value Sportscience 11, 
16-20

 
 


